Diversity of the selected elements of agricultural potential in the European Union countries

https://doi.org/10.17221/381/2019-AGRICECONCitation:Tluczak A. (2020): Diversity of the selected elements of agricultural potential in the European Union countries. Agric. Econ. – Czech, 66: 260-268.
download PDF

Agricultural importance in determining the directions of respective regions results from its production potential. The agricultural potential of a given country is determined by natural resources, ways of using them, natural conditions, workforce resources, technical resources and basic economic conditions. In this paper, only income and rural population are taken under consideration to describe the agricultural potential. Currently, European Union countries are functioning under the assumptions of the Common Agricultural Policy, assuming, among other things, increasing agricultural productivity, ensuring an adequate standard of living for the rural population and stabilising markets. The European Union (EU) is one of the world’s leading exporters and importers of agricultural products. The obtained results allowed the identification in 2010 and 2018 of countries with high and low values of income and population potential. It is characteristic that within both potentials, population and income, the countries with the lowest potentials are the most numerous group. Poland and Romania stand out against the background of all countries, where due to the high share of people working in agriculture, the population’s potential has the highest values. Denmark is also an outstanding country for which income potential has the highest value. This study aims to examine the diversity of selected elements of agricultural potential in the European Union countries. The research was conducted using, among other potential models and global and local spatial autocorrelation statistics. The analysis covered the years 2010 and 2018 by applying statistical data (Eurostat, Statistical Yearbook of Agriculture).

Anselin L. (1995): Local Indicators of Spatial Association – LISA. Geographical Analysis, 27: 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Beck J., Sieber A. (2010): Is the spatial distribution of mankind’s most basic economic traits determined by climate and soil alone? PLoS ONE, 5: e10416. https://doi.org/10.1371/journal.pone.0010416
Benedetti-Cecchi L., Iken K., Konar B., Cruz-Motta J., Knowlton A., Pohle G., Castelli A., Tamburello L., Mead A., Trott T., Miloslawich P., Wong M., Shirayama Y., Lardicci C., Palomo G., Maggi E. (2010): Spatial relationships between polychaete assemblages and environmental variables over broad geographical scales. PLoS ONE, 5: e12946. https://doi.org/10.1371/journal.pone.0012946
Bilbao-Osorio B., Rodríguez-Pose A. (2004): From R&D to innovation and economic growth in the EU. Growth Change, 35: 434–455.
Bowler I.R. (1986): Intensification, concentration and specialisation in agriculture – the case of European Community. Geography, 71: 14–24.
Bonnot N., Gaillard J.-M., Coulon A., Galan M., Cosson J.-F., Delorme D., Klein F., Hewison A.J. (2010): No difference between the sexes in fine-scale spatial genetic structure of roe deer. PLoS ONE, 5: e14436.  https://doi.org/10.1371/journal.pone.0014436
Braun A., Auerswald K., Geist J. (2012): Drivers and spatio-temporal extent of hyporheic patch variation: Implications for sampling. PLoS ONE, 7: e42046. https://doi.org/10.1371/journal.pone.0042046
Bryden J. (2002): Rural development indicators and diversity in the European Union. In: Proceedings Conference on “Measuring Rural Diversity”. Washington, DC, November 21–22, 2002.
Chaplin H. (2000): Agricultural diversification: a review of methodological approaches and empirical evidence. Idara Working Paper 2/2, Wye November.
Chen Y.G. (2012): On the four types of weight functions for spatial contiguity matrix. Letters in Spatial and Resource Sciences, 5: 65–72. https://doi.org/10.1007/s12076-011-0076-6
Chou Y.H. (1997): Exploring Spatial Analysis in Geographic Information Systems. Santa Fe, NM, OnWord Press.
Clark C., Wilson F., Bradley J. (1969): Industrial location and economic potential in Western Europe. Regional Studies, 3: 197–212. https://doi.org/10.1080/09595236900185201
Cliff A.D., Ord J.K. (1973): Spatial Autocorrelation. London, Pion.
Cliff A.D., Ord J.K. (1981): Spatial Processes, Models and Applications. London, Pion: 34–41.
Coffey W. (1978): Income relationships in Boston and Toronto: A tale for two countries? Canadian Geographer, 2: 112–129. https://doi.org/10.1111/j.1541-0064.1978.tb00626.x
D’Amico M., Coppola A., Chinnici G., Di Vita G., Pappalardo G. (2013): Agricultural systems in the European Union: an analysis of regional differences. Engenharia Agrícola, 38: 395–402.
Deblauwe V., Kennel P., Couteron P. (2012): Testing the pairwise association between spatially autocorrelated variables: A new approach using surrogate lattice data. PLoS ONE, 7: e48766. https://doi.org/10.1371/journal.pone.0048766
Dicken P., Lloyd P. (1977): Location in Space: a Theoretical Approach to Economic Geography. 2nd Ed. New York, Harper and Row.
Dutton G. (1970): Macroscopic aspects of metropolitan evolution. Harvard Papers in Theoretical Geography, Geography of Income Series, 1.
Edwards M.E. (2017): Regional and Urban Economics and Economic Development: Theory and Methods. 1st Ed. Routledge: 154–156.
Eurostat Database (2019): Eurostat Database. Available at https://ec.europa.eu/eurostat (accessed Nov, 2019).
Fortin M.J., Drapeau P., Legendre P. (1989): Spatial autocorrelation and sampling design in plant ecology. Vegetatio, 83: 209–222. https://doi.org/10.1007/BF00031693
Friedmann J. (1967): A General Theory of Polarized Development. Urban and Regional Development Advisory Program in Chile. Santiago, Ford Foundation.
Getis A. (2007): Reflections on spatial autocorrelation. Regional Science Urban Economic, 37: 491–496. https://doi.org/10.1016/j.regsciurbeco.2007.04.005
Goodchild M.F. (1986): Spatial Autocorrelation. Concept and Techniques in Modern Geography. Catmog 47, Norwich, Geo Abstracts, University of East Anglia.
Goovaerts P., Jacques G.M. (2004): Accounting for regional background and population size in the detection of spatial clusters and outliers using geostatistical filtering and spatial neutral models: the case of lung cancer in Long Island, New York. International Journal Health Geographics, 3: 14.
Griffith D.A. (2003): Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualisation. Berlin, Springer-Verlag: 65–152.
Haining R. (1990): Spatial Data Analysis in Social and Environmental Sciences. New York, Cambridge University Press.
Hanson G. (1998): Market potential, increasing returns and geographic concentration. NBER Working Paper, 6429, National Bureau of Economic Research, Inc.
Head K., Mayer T. (2011): Gravity, market potential and economic development. Journal of Economic Geography, 11: 281–294. https://doi.org/10.1093/jeg/lbq037
Henebry G.M. (1995): Spatial model error analysis using autocorrelation indices. Ecological Modelling, 82: 75–91. https://doi.org/10.1016/0304-3800(94)00074-R
Impoinvil D.E., Solomon T., Schluter W.W., Rayamajhi A., Bichha R.P., Shakya G., Caminade C., Baylis M. (2011): The spatial heterogeneity between Japanese encephalitis incidence distribution and environmental variables in Nepal. PLoS ONE, 6: e22192. https://doi.org/10.1371/journal.pone.0022192
Isaaks E.H., Shrivastava R.M. (1989): An introduction to applied geo-statistics. 1st Ed. NewYork, Oxford University Press.
Keeble D., Owens P., Thompson C. (1982): Regional accessibility and economic potential in the European community. Regional Studies, 16: 419–32. https://doi.org/10.1080/09595238200185421
Koenig W.D. (1998): Spatial autocorrelation in California land birds. Conservation Biology, 12: 612–620. https://doi.org/10.1046/j.1523-1739.1998.97034.x
Kumar C., Singh P.K., Rai R.K. (2012): Under-five mortality in high focus states in India. A district-level geospatial analysis. PLoS ONE, 7: e37515.
Mateo-Tomás P., Olea P.P. (2010): Anticipating knowledge to inform species management: predicting spatially explicit habitat suitability of a colonial vulture spreading its range. PLoS ONE, 5: e12374. https://doi.org/10.1371/journal.pone.0012374
Mathur M. (2015): Spatial autocorrelation analysis in plant population: An overview. Journal of Applied and Natural Science, 7: 501–513. https://doi.org/10.31018/jans.v7i1.639
Martino G.A., Marchini A. (1996): The role of agriculture in developed economies: new tendencies. MEDIT, 3: 26–30.
Moran P.A.P. (1950): Notes on continuous stochastic phenomena. Biometrika, 37: 17–33. https://doi.org/10.1093/biomet/37.1-2.17
Ord J.K., Getis A. (1995): Local spatial autocorrelation statistics: Distributional issues and an application. Geographical Analysis, 27: 286–306.
Overman H.G., Redding S., Venables A.J. (2003): The economic geography of trade, production and income: a survey of empirics. In: Kwan-Choi E., Harrigan J. (eds): Handbook of International Trade. Oxford, Basil Blackwell: 353–387.
Perry J.N., Dungan J.L., Dale M.R.T., Legendre P. (2002): A balanced view of scale in spatial statistical analysis. Ecography, 2528: 626–640.
Radeloff V.C., Miller T.F., He H.S., Mladenoff D.J. (2000): Periodicity in landscape pattern and geostatistical models: autocorrelation between patches. Ecography, 23: 81–91. https://doi.org/10.1111/j.1600-0587.2000.tb00263.x
Redding S., Venables A.J. (2004): Economic geography and international inequality. Journal of International Economics, 62: 53–82. https://doi.org/10.1016/j.jinteco.2003.07.001
Rich D.C. (1980): Potential Models in Human Geography. Concepts and Techniques in Modern Geography. 1st Ed. Geo Abstracts, 26.
Statistical Yearbook of Agriculture (2019): Statistics Poland. Available at https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/statistical-yearbook-of-agriculture-2018,6,13.html (accessed Nov, 2019).
Stark J.H., Sharma R., Ostroff S., Cummings D.A.T., Ermentrout B., Stebbins S., Burke D.S., Wisniewski S.R. (2012): Local spatial and temporal processes of influenza in Pennsylvania, USA: 2003–2009. PLoS ONE, 7: e34245. https://doi.org/10.1371/journal.pone.0034245
Su-Wei F. , Hsieh C.F. (2010): Spatial autocorrelation patterns of understory plant species in a subtropical rainforest at Lanjenchi. Southern Taiwan. Taiwania, 55: 160–171.
Tłuczak A. (2019): Potential and competitiveness of EU countries in terms of slaughter livestock production. Agricultural Economics – Czech, 65: 550–559. https://doi.org/10.17221/156/2019-AGRICECON
Torgersen C.E., Jones J.A., Moldenke A.R., LeMaster M.P. (1995): The spatial heterogeneity of soil invertebrates and edaphic properties in an old-growth forest stands in western Oregon. In: Collins H.P., Robertson G.P., Klug M.J. (eds): The Significance and Regulation of Soil Biodiversity. Springer, Developments in Plant and Soil Sciences, 63.
Terluin I.J. (2003): Differences in economic development in rural regions of advanced countries: an overview and critical analysis of theories. Journal of Rural Studies, 19: 327–344. https://doi.org/10.1016/S0743-0167(02)00071-2
Vickerman R., Spiekermann K., Wegener M. (1999): Accessibility and economic development in Europe. Regional Studies, 1: 1–15. https://doi.org/10.1080/00343409950118878
Zasada I., Loibl W., Köstl M., Piorr A. (2013): Agriculture under the human influence: a spatial analysis of farming systems and land use in European rural-urban-regions. European Countryside, 5: 71–88. https://doi.org/10.2478/euco-2013-0005
download PDF

© 2020 Czech Academy of Agricultural Sciences