Off-farm role in stabilizing disposable farm income: A Lithuanian case study

https://doi.org/10.17221/69/2020-AGRICECONCitation:Dabkienė V. (2020): Off-farm role in stabilizing disposable farm income: A Lithuanian case study. Agric. Econ. – Czech, 66: 325-334.
download PDF

The paper aims to investigate family farm income volatility by decomposing disposable farm income (DFI) into the on-farm income, income from production support and off-farm income (OFI) over time. The research is focused on the OFI, assessing its role in achieving DFI above reference level based on the average net earnings. Three main indicators consistent with Farm Accountancy Data Network (FADN) were indicated. The research results revealed the significance of OFI. In 2017, 76% of the family farms were engaged in off-farm activities indicating, on one hand that such approaches as part-time farming or lifestyle farming are becoming more attractive to Lithuanian family farmers. On the other hand, research disclosed that farms mostly engaged in off-farm activities yield the lowest on-farm income levels. Moreover, the OFI tends to produce a stabilizing effect on quite a number of farmers as the majority of family farms cannot rely upon the on-farm income as their only income source. Thus, the agricultural and rural development policy makers, aimed at supporting viable farm income and strengthening farm resilience, have to answer the part-time farmers’ needs.

References:
Bachev H. (2017): Sustainability level of Bulgarian farms. Bulgarian Journal of Agricultural Science, 23: 1–13.
 
Bojnec Š., Fertő I. (2013): Farm income sources, farm size and farm technical efficiency in Slovenia. Post-Communist Economies, 25: 343–356. https://doi.org/10.1080/14631377.2013.813140
 
Bojnec Š., Fertő I. (2019): Farm household income inequality in Slovenia. Spanish Journal of Agricultural Research, 17.
 
El Benni N., Finger R. (2013): The effect of agricultural policy reforms on income inequality in Swiss agriculture – An analysis for valley, hill and mountain regions. Journal of Policy Modeling, 35: 638–651. https://doi.org/10.1016/j.jpolmod.2012.03.005
 
European Commission (2018): COM (2018) 392 Final – Proposal for a Regulation of the European Parliament and of the Council. Available at https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A392%3AFIN (accessed Feb 11, 2020).
 
FADN (2018): Methodology. Available at https://ec.europa.eu/agriculture/rica/pdf/site_en.pdf (accessed Feb 11, 2020).
 
Fertő I., Stalgienė A. (2016): Effects of agricultural subsidies on income risk in Lithuanian dairy farms. Management Theory and Studies for Rural Business and Infrastructure Development, 38: 351–358. https://doi.org/10.15544/mts.2016.27
 
Gailhard I.U., Bojnec Š. (2015): Farm size and participation in agri-environmental measures: Farm-level evidence from Slovenia. Land Use Policy, 46: 273–282. https://doi.org/10.1016/j.landusepol.2015.03.002
 
Giannakis E., Efstratoglou S., Antoniades A. (2018): Off-farm employment and economic crisis: evidence from Cyprus. Agriculture, 8: 41.
 
Key N., Prager D., Burns C. (2017): Farm household income volatility: an analysis using panel data from a national survey. Economic Research Report No. (ERR-226). Washington, DC, USA, United States Department of Agriculture, Economic Research Service.
 
LAEI (2020): FADN Survey Results. [Dataset]. Available at https://www.laei.lt/?mt=vt_UADT_tyrimas&straipsnis=482 (accessed Feb 11, 2020).
 
Longhitano D., Bodini A., Povellato A., Scardera A. (2012): Assessing farm sustainability. An application with the Italian FADN sample. In: Proceedings 1st AIEAA Conference Towards a Sustainable Bio-economy: Economic Issues and Policy Challenges. Trento, June 4–5, 2012: 1–12.
 
Morris W., Henley A., Dowell D. (2017): Farm diversification, entrepreneurship and technology adoption: Analysis of upland farmers in Wales. Journal of Rural Studies, 53: 132–143. https://doi.org/10.1016/j.jrurstud.2017.05.014
 
OECD (2003): Farm Household Income: Issues and Policy Responses. Paris, OECD.
 
Paracchini M.L., Bulgheroni C., Borreani G., Tabacco E., Banterle A., Bertoni D., Rossi G., Parolo G., Origgi R., De Paola C. (2015): A diagnostic system to assess sustainability at a farm level: The SOSTARE model. Agricultural Systems, 133: 35–53. https://doi.org/10.1016/j.agsy.2014.10.004
 
Poon K., Weersink A. (2011): Factors affecting variability in farm and off-farm income. Agricultural Finance Review, 71: 379–397. https://doi.org/10.1108/00021461111177639
 
Spicka J., Hlavsa T., Soukupova K., Stolbova M. (2019): Approaches to estimation the farm-level economic viability and sustainability in agriculture: A literature review. Agricultural Economics – Czech, 65: 289–297.
 
Statistics Lithuania (2018): Results of the Farm Structure Survey 2016. Vilnius, LAEI.
 
Van der Ploeg J.D., Long A., Banks J. (2002): Rural Development: The State of the Art. Doetinchem, Elsevier.
 
Vrolijk H.C.J., Poppe K.J. (2019): Impact of off-farm income and paid taxes on the composition and volatility of incomes and wealth of dairy farmers in the Netherlands. In: Proceedings 171th EAAE Seminar Measuring and Evaluating Farm Income and Well-Being of Farm Families in Europe – Towards a Shared and Broader Approach for Analysis and Policy Design? Taenikon, Sept 5–6, 2019: 1–14.
 
Weltin M., Zasada I., Franke C., Piorr A., Raggi M., Viaggi D. (2017): Analysing behavioural differences of farm households: An example of income diversification strategies based on European farm survey data. Land Use Policy, 62: 172–184. https://doi.org/10.1016/j.landusepol.2016.11.041
 
Zahm F., Viaux P., Vilain L., Girardin P., Mouchet C. (2008): Assessing farm sustainability with the IDEA method – from the concept of agriculture sustainability to case studies on farms. Sustainable Development, 16: 271–281. https://doi.org/10.1002/sd.380
 
download PDF

© 2020 Czech Academy of Agricultural Sciences