Making a Markowitz portfolio with agricultural commodity futures

Živkov D., Balaban S., Joksimović M. (2022): Making a Markowitz portfolio with agricultural commodity futures. Agric. Econ. – Czech, 68: 219–229.

download PDF

This paper constructs a minimum-variance portfolio of six agricultural futures. We make a full sample analysis as well as a pre-COVID and COVID examination. Using Markowitz portfolio optimisation, we find that soybean futures have the highest share (31%) in the full sample portfolio because it has the lowest variance. Both soybean oil and rice futures have the second highest weight in the full sample portfolio, in an amount of 24%, because soybean oil has the second lowest variance, whereas rice has, by far, the lowest average correlation with other agricultural futures. Soybean oil has the highest share of 35% in the pre-COVID period, whereas rice follows with 27%. On the other hand, in the COVID period, soybean has a very high share in an amount of 47% due to the lowest risk, while rice takes second place with 19%. Based on the results, investors should invest the most in soybean oil and rice in tranquil periods, while the choice should be soybean and rice in crisis periods. Rice is the choice in both sub-periods because rice has a very low correlation with other agricultural commodities, which happens due to the price stabilisation of rice that is often conducted by Asian countries.

Armeanu D., Balu F.O. (2008): Testing the efficiency of Markowitz model on Bucharest Stock Exchange. Economic Computation and Economic Cybernetics Studies and Research, 42: 201–217.
Baghdadabad M.R.T. (2013): A replacement method in evaluating the performance of international mutual funds. International Journal of Emerging Markets, 8: 144–169.
Cha H.J., Jithendranathan T. (2009): Time-varying correlations and optimal allocation in emerging market equities for the US investors. International Journal of Finance and Economics, 4: 172–187.
Cong R.G., Hedlund K., Andersson H., Brady M. (2014): Managing soil capital: An effective strategy for mitigating future agricultural risks? Agricultural Systems, 129: 30–39.
Hernandez J.A., Kang S.H., Yoon S.M. (2021): Spillovers and portfolio optimization of agricultural commodity and global equity markets. Applied Economics, 53: 1326–1341.
Huang W., Huang Z., Matei M., Wang T. (2012): Price volatility forecast for agricultural commodity futures: The role of high frequency data. Romanian Journal of Economic Forecasting, 15: 83–103. (2022): US Corn Futures – Jul 22 (ZCN2). Available at (accessed Jan, 2022).
Jones P.M., O'Steen H. (2018): Time-varying correlations and Sharpe ratios during quantitative easing. Studies in Nonlinear Dynamics and Econometrics, 22: 20160083.
Markowitz H. (1952): Portfolio selection. Journal of Finance, 7: 77–91.
Massahi M., Mahootchi M., Khamseh A. (2020): Development of an efficient cluster-based portfolio optimization model under realistic market conditions. Empirical Economics, 59: 2423–2442.
Mensi W., Vo X.V., Kang S.H. (2021): Multiscale spillovers, connectedness, and portfolio management among precious and industrial metals, energy, agriculture, and livestock futures. Resources Policy, 74: 102375.
Palanska T. (2020): Measurement of volatility spillovers and asymmetric connectedness on commodity and equity markets. Finance a úvěr – Czech Journal of Economics and Finance, 70: 42–69.
Rehman M.U., Bouri E., Eraslan V., Kumar S. (2019): Energy and non-energy commodities: An asymmetric approach towards portfolio diversification in the commodity market. Resources Policy, 63: 101456.
Santeramo F.G., Lamonaca E. (2019): On the drivers of global grain price volatility: An empirical investigation. Agricultural Economics – Czech, 65: 31–42.
Sidhoum A.A., Serra T. (2016): Volatility spillovers in the Spanish food marketing chain: The case of tomato. Agribusiness: An International Journal, 32: 45–63.
Shang D., Yu C., Diao G. (2021): Study on impacts of COVID-19 pandemic recession based on Monte Carlo simulation. Prague Economic Papers, 30: 724–747.
Smimou K. (2010): Stock market and agricultural futures diversification: An international perspective. The Journal of Alternative Investments, 12: 36–57.
Timmer C.P. (2014): Food security in Asia and the Pacific: The rapidly changing role of rice. Asia and the Pacific Policy Studies, 1: 73–90.
Tonin J.M., Vieira C.M.R., Fragoso R.M. de S., Filho J.G.M. (2020): Conditional correlation and volatility between spot and futures markets for soybean and corn. Agribusiness: An International Journal, 36: 707–724.
Tóth M., Holúbek I., Serenčéš R. (2016): Applying Markowitz portfolio theory to measure the systematic risk in agriculture. In: International Scientific Days: The Agri-Food Value Chain: Challenges for Natural Resources Management and Society, Nitra, Slovak Republic, May 19–20, 2016: 985–993.
You L., Daigler R.T. (2013): A Markowitz optimization of commodity futures portfolios. Journal of Futures Markets, 33: 343–368.
Živkov D., Balaban P., Kuzman B. (2021): How to combine precious metals with corn in a risk-minimizing two-asset portfolio? Agricultural Economics – Czech, 67: 60–69.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti