An integrated data envelopment approach for evaluating the meat companies efficiency L., Chi S. (2019): An integrated data envelopment approach for evaluating the meat companies efficiency. Agric. Econ. – Czech, 65: 470-480.
download PDF

The purpose of this study is to apply the assurance region (AR) concept to restrict the range of input-output weights with expert opinions in the data envelopment approach (DEA). Opinions from 34 experts were collected by a questionnaire in order to rank the importance of cost and revenue sources and measure the influence of business factors with the fuzzy analytic hierarchy process (FAHP). This article suggests that a DEA with AR specification in variable weights can present realistic results to measure and rank the performance of twenty meat auction companies (MAC) in Taiwan. We categorise MACs into four groups by decomposing their two revenue sources with auction and slaughter priority and recommend the managerial strategies for each group to improve operational efficiency. This consideration is more critical for small samples or industries that are close to the spatial competitive market structure.

Amin G.R., Hajjami M. (2016): Application of optimistic and pessimistic OWA and DEA methods in stock selection. International Journal of Intelligent Systems, 31: 1220–1233.
Aparicio J., Ortiz L., Pastor J.T. (2017): Measuring and decomposing profit inefficiency through the Slacks-Based measure. European Journal of Operational Research, 260: 650–654.
Banker R.D., Charnes A., Cooper W.W. (1984): Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30: 1078–1092.
Cook W.D., Kazakov A., Yaakov R., Seiford L.M. (1991): A data envelopment approach to measuring efficiency: Case analysis of highway maintenance patrols. Journal of Socio-Economics, 20: 83–103.
Fukuyama H., Weber W. (2015): Measuring Japanese bank performance: a dynamic network DEA approach. Journal of Productivity Analysis, 44: 249–264.
Kao C. (2017): Efficiency measurement and frontier projection identification for general two-stage systems in data envelopment analysis. European Journal of Operational Research, 261: 679–689.
Keramidou I., Mimis A. (2011): An application of the double-bootstrap data envelopment analysis to investigate sources of efficiency in the Greek poultry sector. World‘s Poultry Science Journal, 67: 675–686.
Kong W.H., Fu T.T. (2012): Assessing the performance of business colleges in Taiwan using data envelopment analysis and student based value-added performance indicators. Omega-International Journal of Management Science, 40: 541–549.
Kuo R.J., Lee L.Y., Hu T.L. (2010): Developing a supplier selection system through integrating fuzzy AHP and fuzzy DEA: a case study on an auto lighting system company in Taiwan. Production Planning & Control, 21: 468–484.
Lai P.L., Potter A., Beynon M., Beresford A. (2015): Evaluating the efficiency performance of airports using an integrated AHP/DEA-AR technique. Transport Policy, 42: 75–85.
Liu S.T., Chuang M.(2009): Fuzzy efficiency measures in fuzzy DEA/AR with application to university libraries. Expert Systems with Applications, 36: 1105–1113.
Mooi E., Sarstedt M. (2011): A Concise Guide to Market Research: Springer-Verlag, Berlin, Heidelberg.
Roll Y., Golany B. (1993): Alternate methods of treating factor weights in DEA. Omega-International Journal of Management Science, 21: 99–109.
Saaty R.W. (1987): The analytic hierarchy process – what it is and how it is used. Mathematical Modelling, 9: 161–176.
Saaty T.L. (1980): The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill, New York.
Saaty T.L. (2006): There is no mathematical validity for using fuzzy number crunching in the analytic hierarchy process. Journal of Systems Science and Systems Engineering, 15: 457–464.
Taiwan Area Meat Market Yearbook (2019): Taiwan Area Meat Market Yearbook. Council of Agriculture. Available at (accessed June 16, 2019).
Taylor W.M., Thompson R.G., Thrall R.M., Dharmapala P.S. (1997): DEA/AR efficiency and profitability of Mexican banks – A total income model. European Journal of Operational Research, 98: 346–363.
Thomas R.R., Barr R.S., Cron W.L., Slocum J.W. (1998): A process for evaluating retail store efficiency: A restricted DEA approach. International Journal of Research in Marketing, 15: 487–503.
Thompson R.G., Langemeier L.N., Lee C.T., Lee E., Thrall R.M. (1990): The role of multiplier bounds in efficiency analysis with application to Kansas farming. Journal of Econometrics, 46: 93–108.
Verdier V. (2016): Estimation of Dynamic Panel Data Models with Cross-Sectional Dependence: Using Cluster Dependence for Efficiency. Journal of Applied Econometrics, 31: 85–105.
Yu M.M., Lin E.T.J. (2008): Efficiency and effectiveness in railway performance using a multi-activity network DEA model. Omega-International Journal of Management Science, 36: 1005–1017.
Yu P., Lee J.H. (2013): A hybrid approach using two-level SOM and combined AHP rating and AHP/DEA-AR method for selecting optimal promising emerging technology. Expert Systems with Applications, 40: 300–314.
Zadeh L.A. (1990): Fuzzy-sets and systems. International Journal of General Systems, 17: 129–138.
download PDF

© 2019 Czech Academy of Agricultural Sciences