Integrating multiple fuzzy expert systems under restricting requirements 

https://doi.org/10.17221/5015-AGRICECONCitation:Aly S., Vrana I. (2006): Integrating multiple fuzzy expert systems under restricting requirements . Agric. Econ. – Czech, 52: 187-196.
download PDF
The multiple, different and specific expertises are often needed in making YES-or-NO (YES/NO) decisions for treating a variety of business, economic, and agricultural decision problems. This is due to the nature of such problems in which decisions are influenced by multiple factors, and accordingly multiple corresponding expertises are required. Fuzzy expert systems (FESs) are widely used to model expertise due to its capability to model real world values which are not always exact, but frequently vague, or uncertain. In addition, they are able to incorporate qualitative factors. The problem of integrating multiple fuzzy expert systems involves several independent and autonomous fuzzy expert systems arranged synergistically to suit a varying problem context. Every expert system participates in judging the problem based on a predefined match between problem context and the required specific expertises. In this research, multiple FESs are integrated through combining their crisp numerical outputs, which reflect the degree of bias to the Yes/No subjective answers. The reasons for independency can be related to maintainability, decision responsibility, analyzability, knowledge cohesion and modularity, context flexibility, sensitivity of aggregate knowledge, decision consistency, etc. This article presents simple algorithms to integrate multiple parallel FES under specific requirements: preserving the extreme crisp output values, providing for null or non-participating expertises, and considering decision-related expert systems, which are true requirements of a currently held project. The presented results provides a theoretical framework, which can bring advantage to decision making is many disciplines, as e.g. new product launching decision, food quality tracking, monitoring of suspicious deviation of the business processes from the standard performance, tax and customs declaration issues, control and logistic of food chains/networks, etc. 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti