Expression of microRNAs in the hypothalamus of pregnant and non-pregnant goats

https://doi.org/10.17221/113/2020-CJASCitation:

Zhu L., Huang J.T., Jing J., Zheng Q., Ji Q.Y., Liu Y., Ding J.P., Fang F.G., Li Y.S., Zhang Y.H., Ling Y.H. (2021): Expression of microRNAs in the hypothalamus of pregnant and non-pregnant goats. Czech J. Anim. Sci., 66: 156–167.

supplementary materialdownload PDF

MicroRNAs (miRNAs) play a significant role in animal reproduction by regulating the expression of protein-coding genes. The hypothalamus regulates the pregnancy cycle changes in goats; however, the action mechanism of miRNAs in this regulation remains to be investigated. In this study, we performed RNA sequencing of hypothalamus samples to establish a comprehensive miRNA profiling of pregnant and non-pregnant goats. A total of 384 miRNAs were identified in the hypothalamus of pregnant goats, of which 239 were newly discovered, and 390 miRNAs were detected in the hypothalamus of non-pregnant goats of which 192 were novel miRNAs. In addition, a total of 280 differentially expressed miRNAs are characterized, of which 171 were known miRNAs and 109 were novel miRNAs. Functional enrichment suggests that the predicted target genes of differentially expressed miRNAs may be involved in the reproductive process. This preliminary study revealed that let-7f-5p, miR-99a-5p and miR-100-5p may be involved in the hypothalamic regulation of pregnancy cycle changes in goats. These data provide a basic reference for subsequent studies on the regulatory role of miRNAs in mammalian pregnancy.

References:
Aguiar-Oliveira MH, Souza AH, Oliveira CR, Campos VC, Oliveira-Neto LA, Salvatori R. Mechanisms in endocrinology: The multiple facets of GHRH/GH/IGF-I axis: Lessons from lifetime, untreated, isolated GH deficiency due to a GHRH receptor gene mutation. Eur J Endocrinol. 2017 Aug 1;177(2):R85-97. https://doi.org/10.1530/EJE-16-1047
 
Amar L, Benoit C, Beaumont G, Vacher CM, Crepin D, Taouis M, Baroin-Tourancheau A. MicroRNA expression profiling of hypothalamic arcuate and paraventricular nuclei from single rats using Illumina sequencing technology. J Neurosci Meth. 2012 Jul 30;209(1):134-43. https://doi.org/10.1016/j.jneumeth.2012.05.033
 
Ayyar K, Reddy KVR. Transcription factor CCAAT/enhancer-binding protein-β upregulates micro RNA, let-7f-1 in human endocervical cells. Am J Reprod Immunol. 2017 Dec;78(6).
 
Bak M, Silahtaroglu A, Moller M, Christensen M, Rath MF, Skryabin B, Kauppinen S. MicroRNA expression in the adult mouse central nervous system. RNA. 2008 Mar 1;14(3):432-44. https://doi.org/10.1261/rna.783108
 
Benzler J, Andrews ZB, Pracht C, Stohr S, Shepherd PR, Grattan DR, Tups A. Hypothalamic WNT signalling is impaired during obesity and reinstated by leptin treatment in male mice. Endocrinology. 2013 Dec 1;154(12):4737-45. https://doi.org/10.1210/en.2013-1746
 
Chen Z, Luo J, Ma L, Wang H, Cao W, Xu H, Zhu J, Sun Y, Li J, Yao D, Kang K, Gou D. MiR130b-regulation of PPARγ coactivator-1α suppresses fat metabolism in goat mammary epithelial cells. PloS One. 2015 Nov 18;10(11): 16 p.
 
Choe SA, Kim MJ, Lee HJ, Kim J, Chang EM, Kim JW, Park HM, Lyu SW, Lee WS, Yoon TK, Kim YS. Increased proportion of mature oocytes with sustained-release growth hormone treatment in poor responders: A prospective randomized controlled study. Arch Gynecol Obstet. 2018 Mar;297(3):791-6. https://doi.org/10.1007/s00404-017-4613-4
 
Dagklis T, Ravanos K, Makedou K, Kourtis A, Rousso D. Common features and differences of the hypothalamic–pituitary–gonadal axis in male and female. Gynecol Endocrinol. 2015 Jan 2;31(1):14-7. https://doi.org/10.3109/09513590.2014.959917
 
Fu SP, Liu BR, Wang JF, Xue WJ, Liu HM, Zeng YL, Huang BX, Li SN, Lv QK, Wang W, Liu JX. β-hydroxybutyric acid inhibits growth hormone-releasing hormone synthesis and secretion through the GPR109A/extracellular signal-regulated 1/2 signalling pathway in the hypothalamus. J Neuroendocrinol. 2015 Mar;27(3):212-22. https://doi.org/10.1111/jne.12256
 
Haack F, Trakooljul N, Gley K, Murani E, Hadlich F, Wimmers K, Ponsuksili S. Deep sequencing of small non-coding RNA highlights brain-specific expression patterns and RNA cleavage. RNA Biol. 2019 Dec 2;16(12):1764-74. https://doi.org/10.1080/15476286.2019.1657743
 
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008 Jan;36 Suppl 1:D480-4.
 
Khanum SA, Hussain M, Kausar R. Assessment of reproductive parameters in female Dwarf goat (Capra hircus) on the basis of progesterone profiles. Anim Reprod Sci. 2007 Dec 1;102(3-4):267-75. https://doi.org/10.1016/j.anireprosci.2006.11.010
 
Lee VH, Lee LT, Chow BK. Gonadotropin-releasing hormone: Regulation of the GnRH gene. FEBS J. 2008 Nov 1;275(22):5458-78. https://doi.org/10.1111/j.1742-4658.2008.06676.x
 
Lee J, Kim K, Yu SW, Kim EK. Wnt3a upregulates brain-derived insulin by increasing NeuroD1 via Wnt/β-catenin signaling in the hypothalamus. Mol Brain. 2016 Mar;9(1): 12 p. https://doi.org/10.1186/s13041-016-0207-5
 
Li J, Qu H, Jiang H, Zhao Z, Zhang Q. Transcriptome-wide comparative analysis of microRNA profiles in the telogen skins of liaoning cashmere goats (Capra hircus) and fine-wool sheep (Ovis aries) by solexa deep sequencing. DNA Cell Biol. 2016 Nov 1;35(11):696-705. https://doi.org/10.1089/dna.2015.3161
 
Ling Y, Zheng Q, Jing J, Sui M, Zhu L, Li Y, Zhang Y, Liu Y, Fang F, Zhang X. RNA-seq reveals mirna role shifts in seven stages of skeletal muscles in goat fetuses and kids. Front Genet. 2020 Jul 7;11: 12 p. https://doi.org/10.3389/fgene.2020.00684
 
McBride D, Carr W, Sontakke SD, Hogg CO, Law A, Donadeu FX, Clinton M. Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction. 2012 Aug 1;144
 
(2): 13 p.
 
Niu B, Wu J, Mu H, Li B, Wu C, He X, Bai C, Li G, Hua J. miR-204 regulates the proliferation of dairy goat spermatogonial stem cells via targeting to Sirt1. Rejuv Res. 2016 Apr;19(2):120-30. https://doi.org/10.1089/rej.2015.1719
 
Ob’edkova K, Kogan I, Krikheli I, Dzhemlikhanova L, Muller V, Mekina I, Lesik E, Komarova E, Mazi-lina M, Niauri D, Gzgzyan A, Aylamazyan E. Growth hormone co-treatment in IVF/ICSI cycles in poor responders. Gynecol Endocrinol. 2017 Dec 22;33 Suppl 1:15-7.
 
Quan Q, Zhu L, Zheng Q, Wu H, Jing J, Chen Q, Liu Y, Fang F, Li Y, Zhang Y, Ling Y. Comparison of the pituitary gland transcriptome in pregnant and non-pregnant goats (Capra hircus). Czech J Anim Sci. 2019 Oct 14;64(10):420-30.
 
Ringholm L, Damm P, Mathiesen ER. Improving pregnancy outcomes in women with diabetes mellitus: Modern management. Nat Rev Endocrinol. 2019 Jul;15(7):406-16. https://doi.org/10.1038/s41574-019-0197-3
 
Segner H, Verburg-van Kemenade BL, Chadzinska M. The immunomodulatory role of the hypothalamus-pituitary-gonad axis: Proximate mechanism for reproduction-immune trade offs? Dev Comp Immunol. 2017 Jan 1;66:43-60.
 
Tang X, Wang J, Zhou S, Zhou J, Jia G, Wang H, Xin C, Fu G, Zhang J. miR 760 regulates skeletal muscle proliferation in rheumatoid arthritis by targeting Myo18b. Mol Med Rep. 2019 Dec 1;20(6):4843-54. https://doi.org/10.3892/mmr.2019.10775
 
Vila G, Luger A. Growth hormone deficiency and pregnancy: Any role for substitution? Minerva Endocrinol. 2018 Mar 8;43(4):451-7.
 
Zarandi M, Varga JL, Schally AV, Horvath JE, Toller GL, Kovacs M, Letsch M, Groot K, Armatis P, Halmos G. Lipopeptide antagonists of growth hormone-releasing hormone with improved antitumor activities. Proc Natl Acad Sci USA. 2006 Mar 21;103(12):4610-5. https://doi.org/10.1073/pnas.0511348103
 
Zhang JH, Zhang XD, Yue LN, Guo XY, Tang JX, Guo LR, Li Y, Tang SS. Novel hGHRH homodimer promotes fertility of female infertile hamster by up-regulating ovarian GHRH receptor without triggering GH secretion. Eur J Pharm Sci. 2018 May 30;117:341-50.
 
Zhang Z, Li X, Li A, Wu G. miR-485-5p suppresses Schwann cell proliferation and myelination by targeting cdc42 and Rac1. Exp Cell Res. 2020 Mar 1;388(1): 7 p. https://doi.org/10.1016/j.yexcr.2019.111803
 
Zhu L, Chen T, Sui MH, Han CY, Fang FG, Ma YH, Chu MX, Zhang XR, Liu CY, Ling YH. Comparative profiling of differentially expressed microRNAs between the follicular and luteal phases ovaries of goats. Springerplus. 2016 Aug 2;5(1): 15 p.
 
Zi XD, Lu JY, Ma L. Identification and comparative analysis of the ovarian microRNAs of prolific and non-prolific goats during the follicular phase using high-throughput sequencing. Sci Rep. 2017 May 15;7(1): 10 p. https://doi.org/10.1038/s41598-017-02225-x
 
supplementary materialdownload PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti