Effects of polymorphism in the bovine PTPRQ gene on the expression of MYF6 and MYF5 genes in skeletal muscle and on meat production traits in beef bulls

https://doi.org/10.17221/118/2014-CJASCitation:Robakowska-Hyżorek D., Starzyński R.R., Żelazowska B., Oprządek J., Sadkowski T., Zwierzchowski L. (2016): Effects of polymorphism in the bovine PTPRQ gene on the expression of MYF6 and MYF5 genes in skeletal muscle and on meat production traits in beef bulls. Czech J. Anim. Sci., 61: 232-242.
supplementary materialdownload PDF
The aim of the study was to characterize nucleotide sequence polymorphisms in the bovine PTPRQ gene, to search for their possible effect on the expression of myogenic factor 6 (MYF6; MRF4) and myogenic factor 5 (MYF5) genes in skeletal muscle and on meat production traits. Three novel SNPs were found in intron 35 of the bovine PTPRQ gene: g.200,451A>G, g.200,467T>C, g.200,480C>T (GenBank Acc. No. NW_001494990.2; counted from translation initiation site). These SNPs are placed very closely to each other (within 29 base pairs). The results showed that genotype influenced the expression of MYF6 and MYF5 genes in longissimus dorsi muscle of Limousine bulls both at the transcript and protein levels. Moreover, an association was found between the PTPRQ genotype and carcass traits in Limousine bulls. These findings suggest that bovine PTPRQ gene may contain regulatory sequences for MRF genes located 24 kb downstream. The results also showed that nucleotide sequence polymorphisms in the PTPRQ gene may influence meat production traits in beef cattle, possibly through the regulation of the MRF genes expression.
References:
Berger Ryan R., Sanders Michel M. (2000): Estrogen Modulates HNF-3 beta mRNA Levels in the Developing Chick Oviduct. DNA and Cell Biology, 19, 103-112  https://doi.org/10.1089/104454900314618
 
Berkes Charlotte A., Tapscott Stephen J. (2005): MyoD and the transcriptional control of myogenesis. Seminars in Cell & Developmental Biology, 16, 585-595  https://doi.org/10.1016/j.semcdb.2005.07.006
 
Bhuiyan M.S.A., Kim N.K., Cho Y.M., Yoon D., Kim K.S., Jeon J.T., Lee J.H. (2009): Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livestock Science, 126, 292-297  https://doi.org/10.1016/j.livsci.2009.05.019
 
Borges L. G., Seifert R. A., Grant F. J., Hart C. E., Disteche C. M., Edelhoff S., Solca F. F., Lieberman M. A., Lindner V., Fischer E. H., Lok S., Bowen-Pope D. F. (1996): Cloning and Characterization of Rat Density-Enhanced Phosphatase-1, a Protein Tyrosine Phosphatase Expressed by Vascular Cells. Circulation Research, 79, 570-580  https://doi.org/10.1161/01.RES.79.3.570
 
Carvajal Jaime J., Rigby Peter W.J. (2010): Regulation of gene expression in vertebrate skeletal muscle. Experimental Cell Research, 316, 3014-3018  https://doi.org/10.1016/j.yexcr.2010.07.005
 
Carvajal J.J., Cox D., Summerbell D., Rigby P.W.J. (2001): A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development. Development, 128, 1857–1868.
 
Carvajal J. J., Keith A., Rigby P. W.J. (2008): Global transcriptional regulation of the locus encoding the skeletal muscle determination genes Mrf4 and Myf5. Genes & Development, 22, 265-276  https://doi.org/10.1101/gad.442408
 
Chandra Sruti, Terragni Jolyon, Zhang Guoqiang, Pradhan Sriharsa, Haushka Stephen, Johnston Douglas, Baribault Carl, Lacey Michelle, Ehrlich Melanie (2015): Tissue-specific epigenetics in gene neighborhoods: myogenic transcription factor genes. Human Molecular Genetics, 24, 4660-4673  https://doi.org/10.1093/hmg/ddv198
 
Chang Ted Hung-Tse, Primig Michael, Hadchouel Juliette, Tajbakhsh Shahragim, Rocancourt Didier, Fernandez Anne, Kappler Roland, Scherthan Harry, Buckingham Margaret (2004): An enhancer directs differential expression of the linked Mrf4 and Myf5 myogenic regulatory genes in the mouse. Developmental Biology, 269, 595-608  https://doi.org/10.1016/j.ydbio.2004.02.013
 
Giordani J., Bajard L., Demignon J., Daubas P., Buckingham M., Maire P. (2007): Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs. Proceedings of the National Academy of Sciences, 104, 11310-11315  https://doi.org/10.1073/pnas.0611299104
 
Hoggatt April M., Kriegel Alison M., Smith Aiping F., Herring B. Paul (2000): Hepatocyte Nuclear Factor-3 Homologue 1 (HFH-1) Represses Transcription of Smooth Muscle-specific Genes. Journal of Biological Chemistry, 275, 31162-31170  https://doi.org/10.1074/jbc.M005595200
 
Jung Hyeyun, Kim Won Kon, Kim Do Hyung, Cho Yee Sook, Kim Seung Jun, Park Sung Goo, Park Byoung Chul, Lim Heon Man, Bae Kwang-Hee, Lee Sang Chul (2009): Involvement of PTP-RQ in differentiation during adipogenesis of human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 383, 252-257  https://doi.org/10.1016/j.bbrc.2009.04.001
 
Kanai N, Fujii T, Saito K, Tokoyama T (1994): Rapid and simple method for preparation of genomic DNA from easily obtainable clotted blood.. Journal of Clinical Pathology, 47, 1043-1044  https://doi.org/10.1136/jcp.47.11.1043
 
Lee Dong Kun (2002): Androgen receptor enhances myogenin expression and accelerates differentiation. Biochemical and Biophysical Research Communications, 294, 408-413  https://doi.org/10.1016/S0006-291X(02)00504-1
 
Lee Eun Ju, Malik Adeel, Pokharel Smritee, Ahmad Sarafraz, Mir Bilal Ahmad, Cho Kyung Hyun, Kim Jihoe, Kong Joon Chan, Lee Dong-Mok, Chung Ki Yong, Kim Sang Hoon, Choi Inho, Rota Rossella (2014): Identification of Genes Differentially Expressed in Myogenin Knock-Down Bovine Muscle Satellite Cells during Differentiation through RNA Sequencing Analysis. PLoS ONE, 9, e92447-  https://doi.org/10.1371/journal.pone.0092447
 
Li C., Basarab J., Snelling W. M., Benkel B., Murdoch B., Hansen C., Moore S. S. (2004): Assessment of positional candidate genes 5 and 1 for growth on bovine chromosome 5 in commercial lines of. Journal of Animal Science, 82, 1-  https://doi.org/10.2527/2004.8211
 
Liu Min, Peng Jian, Xu De-Quan, Zheng Rong, Li Feng-E, Li Jia-Lian, Zuo Bo, Lei Ming-Gang, Xiong Yuan-Zhu, Deng Chang-Yan, Jiang Si-Wen (2008): Association of MYF5 and MYOD1 Gene Polymorphisms and Meat Quality Traits in Large White × Meishan F2 Pig Populations. Biochemical Genetics, 46, 720-732  https://doi.org/10.1007/s10528-008-9187-1
 
Maak S., Neumann K., Swalve H.H. (2006): Identification and analysis of putative regulatory sequences for the MYF5/MYF6 locus in different vertebrate species. Gene, 379, 141-147  https://doi.org/10.1016/j.gene.2006.05.007
 
MacNeil M. D., Grosz M. D. (2002): Genome-wide scans for QTL affecting carcass traits in Hereford × composite double backcross populations. Journal of Animal Science, 80, 2316-  https://doi.org/10.2527/2002.8092316x
 
Macpherson Peter C. D., Wang Xun, Goldman Daniel (2011): Myogenin regulates denervation-dependent muscle atrophy in mouse soleus muscle. Journal of Cellular Biochemistry, 112, 2149-2159  https://doi.org/10.1002/jcb.23136
 
Oprzadek J., Dymnicki E., Oprzadek A., Sloniewski K., Sakowski T., Reklewski Z. (2001): A note on the effect of breed of beef cattle on the carcass traits. Animal Science Papers and Reports, 19, 79–89.
 
Penner Gail, Gang Gyu, Sun Xiaoyan, Wray Curtis, Hasselgren Per-Olof (2002): C/EBP DNA-binding activity is upregulated by a glucocorticoid-dependent mechanism in septic muscle. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 282, R439-R444  https://doi.org/10.1152/ajpregu.00512.2001
 
Pfaffl M. W. (): A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, 45e-45  https://doi.org/10.1093/nar/29.9.e45
 
Pietas Agnieszka, Schlüns Karsten, Marenholz Ingo, Schäfer Beat W., Heizmann Claus W., Petersen Iver (2002): Molecular Cloning and Characterization of the Human S100A14 Gene Encoding a Novel Member of the S100 Family. Genomics, 79, 513-522  https://doi.org/10.1006/geno.2002.6744
 
Pin Christopher L, Konieczny Stephen F (2002): A fast fiber enhancer exists in the muscle regulatory factor 4 gene promoter. Biochemical and Biophysical Research Communications, 299, 7-13  https://doi.org/10.1016/S0006-291X(02)02571-8
 
Ribas Ricardo, Moncaut Natalia, Siligan Christine, Taylor Kevin, Cross Joe W., Rigby Peter W.J., Carvajal Jaime J. (2011): Members of the TEAD family of transcription factors regulate the expression of Myf5 in ventral somitic compartments. Developmental Biology, 355, 372-380  https://doi.org/10.1016/j.ydbio.2011.04.005
 
Robakowska-Hyżorek Dagmara, Oprządek Jolanta, Żelazowska Beata, Olbromski Rafał, Zwierzchowski Lech (2010): Effect of the g.–723G→T Polymorphism in the Bovine Myogenic Factor 5 (Myf5) Gene Promoter Region on Gene Transcript Level in the Longissimus Dorsi Muscle and on Meat Traits of Polish Holstein-Friesian Cattle. Biochemical Genetics, 48, 450-464  https://doi.org/10.1007/s10528-009-9328-1
 
Roy Arun K., Chatterjee Bandana (1995): Androgen Action. Critical Reviews™ in Eukaryotic Gene Expression, 5, 157-176  https://doi.org/10.1615/CritRevEukarGeneExpr.v5.i2.30
 
Sabourin Luc A, Rudnicki Michael A (2000): The molecular regulation of myogenesis. Clinical Genetics, 57, 16-25  https://doi.org/10.1034/j.1399-0004.2000.570103.x
 
Sadkowski T., Jank M., Zwierzchowski L., Oprzadek J., Motyl T. (2009a): Comparison of skeletal muscle transcriptional profiles in dairy and beef breeds bulls. Journal of Applied Genetics, 50, 109–123.
 
Sadkowski T., Jank M., Zwierzchowski L., Oprzadek J., Motyl T. (2009b): Transcriptomic index of skeletal muscle of beef breeds bulls. Journal of Physiology and Pharmacology, 60, 15–27.
 
Soleimani Vahab D., Punch Vincent G., Kawabe Yoh-ichi, Jones Andrew E., Palidwor Gareth A., Porter Christopher J., Cross Joe W., Carvajal Jaime J., Kockx Christel E.M., van IJcken Wilfred F.J., Perkins Theodore J., Rigby Peter W.J., Grosveld Frank, Rudnicki Michael A. (2012): Transcriptional Dominance of Pax7 in Adult Myogenesis Is Due to High-Affinity Recognition of Homeodomain Motifs. Developmental Cell, 22, 1208-1220  https://doi.org/10.1016/j.devcel.2012.03.014
 
Suryawan Agus, Davis Teresa A. (2003): Protein-tyrosine-phosphatase 1B activation is regulated developmentally in muscle of neonatal pigs. American Journal of Physiology - Endocrinology And Metabolism, 284, E47-E54  https://doi.org/10.1152/ajpendo.00210.2002
 
Teboul L., Hadchouel J., Daubas P., Summerbell D., Buckingham M., Rigby P.W.J. (2002): The early epaxial enhancer is essential for the initial expression of the skeletal muscle determination gene Myf5 but not for subsequent, multiple phases of somitic myogenesis. Development, 129, 4571–4580.
 
Wyce Anastasia, Bai Yuchen, Nagpal Sunil, Thompson Catherine C. (2010): Research Resource: The Androgen Receptor Modulates Expression of Genes with Critical Roles in Muscle Development and Function. Molecular Endocrinology, 24, 1665-1674  https://doi.org/10.1210/me.2010-0138
 
Yin Huadong, Zhang Zhichao, Lan Xi, Zhao Xiaoling, Wang Yan, Zhu Qing (2011): Association of MyF5, MyF6 and MyOG Gene Polymorphisms with Carcass Traits in Chinese Meat Type Quality Chicken Populations. Journal of Animal and Veterinary Advances, 10, 704-708  https://doi.org/10.3923/javaa.2011.704.708
 
supplementary materialdownload PDF

© 2020 Czech Academy of Agricultural Sciences