Changes in milk ketone and fatty acid concentrations during early lactation in Holstein and Fleckvieh cows

https://doi.org/10.17221/122/2021-CJASCitation:

Štolcová M., Řehák D., Bartoň L. (2021): Changes in milk ketone and fatty acid concentrations during early lactation in Holstein and Fleckvieh cows. Czech J. Anim. Sci. 66 (2021): 477-486.

download PDF

The aim of this study was to compare the changes in milk composition postpartum, especially ketones and milk fatty acids (FAs), in Holstein and Fleckvieh cows kept under identical management conditions. Milk composite samples were collected from 66 cows during afternoon milking, at weekly intervals from one to eight weeks postpartum, and their components were determined by Fourier transform infrared spectroscopy. The Holstein cows had higher (P < 0.05) concentrations of long-chain FAs (ranging from 6% to 16% in different weeks), monounsaturated FAs (6% to 12%), and C18:1 (5% to 16%), as well as lower (P < 0.05) concentrations of saturated FAs (3% to 8%) and short-chain FAs (7% to 17%) in their milk than the Fleckvieh cows for almost the entire monitored period. These differences can be explained by pronounced lipomobilization, due to a negative energy balance, when mainly long-chain FAs from adipose tissue are incorporated into milk and significantly inhibit the de novo synthesis of FAs in the mammary gland. In conclusion, it can be assumed that breed-related metabolic changes during the first weeks of lactation have a large effect on the milk FA composition. This reflection of the metabolic load changes and lipomobilization in differing milk FA profiles would allow for the use of selected milk FAs to detect energy imbalances and their associated diseases in early lactation cows.

 

References:
Chandler TL, Pralle RS, Dorea JRR, Poock SE, Oetzel GR, Fourdraine RH, White HM. Predicting hyperketonemia by logistic and linear regression using test-day milk and performance variables in early-lactation Holstein and Jersey cows. J Dairy Sci. 2018 Mar 1;101(3):2476-91. https://doi.org/10.3168/jds.2017-13209
 
Chilliard Y, Ferlay A, Mansbridge RM, Doreau M. Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann Zootech. 2000 May 1;49(3):181-205. https://doi.org/10.1051/animres:2000117
 
De Marchi M, Toffanin V, Cassandro M, Penasa M. Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits. J Dairy Sci. 2014 Mar 1;97(3):1171-86. https://doi.org/10.3168/jds.2013-6799
 
De Roos APW, Van den Bijgaart HJCM, Horlyk J, De Jong G. Screening for subclinical ketosis in dairy cattle by fourier transform infrared spectrometry. J Dairy Sci. 2007 Apr 1;90(4):1761-6. https://doi.org/10.3168/jds.2006-203
 
Denis-Robichaud J, Dubuc J, Lefebvre D, DesCoteaux L. Accuracy of milk ketone bodies from flow-injection analysis for the diagnosis of hyperketonemia in dairy cows. J Dairy Sci. 2014 Jun 1;97(6):3364-70. https://doi.org/10.3168/jds.2013-6744
 
Duchacek J, Stadnik L, Ptacek M, Beran J, Okrouhla M, Citek J, Stupka R. Effect of cow energy status on the hypercholesterolaemic fatty acids proportion in raw milk. Czech J Food Sci. 2014 Jan;32(3):273-9. https://doi.org/10.17221/360/2013-CJFS
 
Duchacek J, Stadnik L, Ptacek M, Beran J, Okrouhla M, Gasparik M. Negative energy balance influences nutritional quality of milk from Czech Fleckvieh cows due changes in proportion of fatty acids. Animals. 2020 Mar;10(4): 11 p. https://doi.org/10.3390/ani10040563
 
Duffield TF, Lissemore KD, McBride BW, Leslie KE. Impact of hyperketonemia in early lactation dairy cows on health and production. J Dairy Sci. 2009 Feb 1;92(2):571-80. https://doi.org/10.3168/jds.2008-1507
 
Gottardo P, Penasa M, Righi F, Lopez-Villalobos N, Cassandro M, De Marchi M. Fatty acid composition of milk from Holstein-Friesian, Brown Swiss, Simmental and Alpine Grey cows predicted by mid-infrared spectroscopy. Ital J Anim Sci. 2017 Jul 3;16(3):380-9. https://doi.org/10.1080/1828051X.2017.1298411
 
Grelet C, Bastin C, Gele M, Daviere JB, Johan M, Werner A, Reding R, Fernandez Pierna JA, Coliet FG, Dardene P, Gengler N, Soyeurt H, Dehareng F. Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network. J Dairy Sci. 2016 Jun 1;99(6):4816-25. https://doi.org/10.3168/jds.2015-10477
 
Gross JJ, Van Dorland HA, Brukmaier RM, Schwarz FJ. Milk fatty acid profile related to energy balance in dairy cows. J Dairy Res. 2011 Nov;78(4):479-88. https://doi.org/10.1017/S0022029911000550
 
Gustafsson AH, Emanuelson U. Milk acetone concentration as an indicator of hyperketonaemia in dairy cows: The critical value revised. Anim Sci. 1996 Oct;63(2):183-8. https://doi.org/10.1017/S1357729800014739
 
ICAR – International Committee for Animal Recording. Milk recording surveys on cows, sheep, and goats [Internet]. [Rome, Italy]: ICAR; 2021 [cited 2021 Nov 5]. Available from: https://my.icar.org/stats/list.
 
Kelsey JA, Corl BA, Collier RJ, Bauman DE. The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. J Dairy Sci. 2003 Aug 1;86(8):2588-97. https://doi.org/10.3168/jds.S0022-0302(03)73854-5
 
Knob DA, Neto AT, Schweizer H, Weigand AC, Kappes R, Scholz AM. Energy balance indicators during the transition period and early lactation of purebred Holstein and Simmental cows and their crosses. Animals. 2021 Jan 26;11(2): 20 p. https://doi.org/10.3390/ani11020309
 
Lindmark Mansson H. Fatty acids in bovine milk fat. Food Nutr Res. 2008 Jan 1;52: 3 p. https://doi.org/10.3402/fnr.v52i0.1821
 
Litherland NB, Dann HM, Drackley JK. Prepartum nutrient intake alters palmitate metabolism by liver slices from peripartal dairy cows. J Dairy Sci. 2011 Apr 1;94(4):1928-40. https://doi.org/10.3168/jds.2010-3220
 
Littell RC, Pendergast J, Natarajan R. Modelling covariance structure in the analysis of repeated measures data. Stat Med. 2000 Jul 15;19(13):1793-819. https://doi.org/10.1002/1097-0258(20000715)19:13<1793::AID-SIM482>3.0.CO;2-Q
 
Loften JR, Linn JG, Drackley JK, Jenkins TC, Soderholm CG, Kertz AF. Invited review: Palmitic and stearic acid metabolism in lactating dairy cows. J Dairy Sci. 2014 Aug 1;97(8):4661-74. https://doi.org/10.3168/jds.2014-7919
 
Maurice-Van Eijndhoven MHT, Bovenhuis H, Soyeurt H, Calus MPL. Differences in milk fat composition predicted by mid-infrared spectrometry among dairy cattle breeds in the Netherlands. J Dairy Sci. 2013 Apr 1;96(4):2570-82. https://doi.org/10.3168/jds.2012-5793
 
McArt JAA, Nydam DV, Oetzel GR. Epidemiology of subclinical ketosis in early lactation in dairy cattle. J Dairy Sci. 2012 Sep;95(9):5056-66. https://doi.org/10.3168/jds.2012-5443
 
McParland S, Banos G, Wall E, Coffey MP, Soyeurt H, Veerkamp RF, Berry DP. The use of mid-infrared spectrometry to predict body energy status of Holstein cows. J Dairy Sci. 2011 Jul 1;94(7):3651-61. https://doi.org/10.3168/jds.2010-3965
 
McParland S, Lewis E, Kennedy E, Moore SG, McCarthy B, O’Donovan M, Butler ST, Pryce JE, Berry DP. Mid-infrared spectrometry of milk as a predictor of energy intake and efficiency in lactating dairy cows. J Dairy Sci. 2014 Sep 1;97(9):5863-71. https://doi.org/10.3168/jds.2014-8214
 
Mlynek K, Danielewicz A, Straczek I. The effect of energy metabolism up to the peak of lactation on the main fractions of fatty acids in the milk of selected dairy cow breeds. Animals. 2021 Jan 7;11(1): 14 p.  https://doi.org/10.3390/ani11010112
 
Palmquist DL, Beaulieu AD, Barbano DM. Feed and animal factors influencing milk fat composition. J Dairy Sci. 1993 Jun 1;76(6):1753-71. https://doi.org/10.3168/jds.S0022-0302(93)77508-6
 
Renaud DL, Kelton DF, Duffield TF. Short communication: Validation of a test-day milk test for β-hydroxybutyrate for identifying cows with hyperketonemia. J Dairy Sci. 2019 Feb 1;102(2):1589-93. https://doi.org/10.3168/jds.2018-14778
 
Roche JR, Bell AW, Overton TR, Loor JJ. Nutritional management of the transition cow in the 21st century – A paradigm shift in thinking. Anim Prod Sci. 2013 May 30;53(9):1000-23. https://doi.org/10.1071/AN12293
 
Soyeurt H, Dardenne P, Gillon A, Croquet C, Vanderick S, Mayeres P, Bertozzi C, Gengler N. Variation in fatty acid contents of milk and milk fat within and across breeds. J Dairy Sci. 2006 Dec 1;89(12):4858-65. https://doi.org/10.3168/jds.S0022-0302(06)72534-6
 
Soyeurt H, Dehareng F, Gengler N, McParland S, Wall E, Berry DP, Coffey M, Dardenne P. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. J Dairy Sci. 2011 Apr 1;94(4):1657-67. https://doi.org/10.3168/jds.2010-3408
 
Stolcova M, Rehak D, Barton L, Rajmon R. Blood biochemical parameters measured during the periparturient period in cows of Holstein and Fleckvieh breeds differing in production purpose. Czech J Anim Sci. 2020 May 31;65(5):172-81. https://doi.org/10.17221/99/2020-CJAS
 
Stoop WM, Bovenhuis H, Heck JML, Van Arendonk JAM. Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J Dairy Sci. 2009 Apr 1;92(4):1469-78. https://doi.org/10.3168/jds.2008-1468
 
Van Saun RJ. Indicators of dairy cow transition risks: Metabolic profiling revisited. Tierarztl Prax Ausg G. 2016 Mar 31;44(2):118-26. https://doi.org/10.15653/TPG-150947
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti