Effect of different dietary fibre sources on the zootechnical performance, feeding behaviour and intestinal physiology of growing and finishing pigs

https://doi.org/10.17221/126/2021-CJASCitation:

Pichler J., Hemetsberger F., Buchberger M., Schwarz C., Schedle K. (2022): Effect of different dietary fibre sources on the zootechnical performance, feeding behaviour and intestinal physiology of growing and finishing pigs. Czech J. Anim. Sci., 67: 15–26.

download PDF

The aim of this study was to determine the effect of different sources of fibre in the diets of fattening pigs on performance, feeding behaviour and intestinal physiology. A total of 60 barrows and gilts (initial body weight 28.4 ± 0.4 kg) were allotted to four dietary treatments: control (CON), lignocellulose (LC), mycelium (MYC) and corn gluten feed (CGF). Diets were calculated to provide balanced available nutrient contents. Including MYC in the diet resulted in an increased average daily gain (< 0.05) compared to CON and CGF, and improved gain to feed ratio (< 0.05) compared to LC. Pigs in CON (< 0.05) ate the fewest but largest meals, whereas treatment CGF (< 0.05) showed the opposite effect, resulting in the same daily feeder occupation time. Regarding intestinal physiology, in ileum, no differences were observed between the contents of short chain fatty acids (SCFA), lactic acid and biogenic amines. In the colon, MYC showed an increased concentration of acetic acid (< 0.05) as well as the total content of SCFA (< 0.05), compared to LC and CGF. Distinct fermentation profiles of ammonia were recorded in ileal and colonic digesta, although contents remained below harmful concentrations. Morphometrical measurements showed differences between the fibre sources LC and MYC, as well as LC and the CON in all investigated gut sections. These results provide evidence that the inclusion of specific dietary fibre sources/contents can positively influence the gut morphology and performance of pigs. However, further studies are needed regarding the mode of action and physico-chemical characteristics of the different fibre sources as a precondition for their successful application in pig diets.

References:
Bikker P, Dirkzwager A, Fledderus J, Trevisi P, le Huerou-Luron I, Lalles JP, Awati A. The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets. J Anim Sci. 2006 Dec 8;84(12):3337-45. https://doi.org/10.2527/jas.2006-076
 
Cummings JH, Mann JI, Nishida C, Vorster HH. Dietary fibre: An agreed definition. Lancet. 2009 Jan 31;373(9661):365-6. https://doi.org/10.1016/S0140-6736(09)60117-3
 
de Haer LCM, de Vries AG. Effects of genotype and sex on the feed intake pattern of group housed growing pigs. Livest Prod Sci. 1993 Sep 1;36(3):223-32. https://doi.org/10.1016/0301-6226(93)90055-M
 
De Preter V, Hamer HM, Windey K, Verbeke K. The impact of pre- and/or probiotics on human colonic metabolism: Does it affect human health? Mol Nutr Food Res. 2011 Jan;55(1):46-57. https://doi.org/10.1002/mnfr.201000451
 
GfE (Society of Nutrition Physiology). Empfehlungen zur Energie- und Nahrstoffversorgung von Schweinen [Recommendations on the energy and nutrient supply of pigs]. Frankfurt am Main: DLG-Verlag; 2006. 247 p. German.
 
GfE (Society of Nutrition Physiology). Proceedings of the Society of Nutrition Physiology Vol. 17: Recommendations for the Supply of Energy and Nutrients to Pigs. Frankfurt am Main: DLG-Verlag; 2008. 215 p.
 
Gilbert H, Billon Y, Brossard L, Faure J, Gatellier P, Gondret F, Labussiere E, Lebret B, Lefaucheur L, Le Floch N, Louveau I, Merlot E, Meunier-Salaun MC, Montagne L, Mormede P, Renaudeau D, Riquet J, Rogel-Gaillard C, Van Milgen J, Vincent A, Noblet J. Review: Divergent selection for residual feed intake in the growing pig. Animal. 2017 Jan 25;11(9):1427-39. https://doi.org/10.1017/S175173111600286X
 
Gutierrez NA, Kerr BJ, Patience JF. Effect of insoluble-low fermentable fiber from corn-ethanol distillation origin on energy, fiber, and amino acid digestibility, hindgut degradability of fiber, and growth performance of pigs. J Anim Sci. 2013 Nov 1;91(11):5314-25. https://doi.org/10.2527/jas.2013-6328
 
Jaworski NW, Laerke HN, Bach Knudsen KE, Stein HH. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains. J Anim Sci. 2015 Mar 1;93(3):1103-13. https://doi.org/10.2527/jas.2014-8147
 
Kallabis KE, Kaufmann O. Effect of a high-fibre diet on the feeding behaviour of fattening pigs. Arch Anim Bred. 2012 Oct 10;55(3):272-84. https://doi.org/10.5194/aab-55-272-2012
 
Kraler M, Schedle K, Schwarz C, Domig K, Pichler M, Oppeneder A, Wetscherek W, Pruckler M, Pignitter M, Pirker K, Somoza V, Daniel H, Kneifel W. Fermented and extruded wheat bran in piglet diets: Impact on performance, intestinal morphology, microbial metabolites in chyme and blood lipid radicals. Arch Anim Nutr. 2015 Sep 3;69(5):378-98. https://doi.org/10.1080/1745039X.2015.1075671
 
Kyriazakis I, Emmans G. The voluntary feed intake of pigs given feed based on wheat bran, dried citrus pulp and grass meal, in relation to measurements of feed bulk. Br J Nutr. 1995 Feb;73(2):191-207. https://doi.org/10.1079/BJN19950023
 
Loibl P, Widnisch W, Preissinger W. Examination of high-resolution feed intake data of growing finishing pigs confronted with high deoxynivalenol contents present in their feed. Czech J Anim Sci. 2020 Nov 27;65(11):411-23. https://doi.org/10.17221/189/2020-CJAS
 
Macfarlane GT, Gibson GR, Beatty E, Cummings JH. Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements. FEMS Microbiol Lett. 1992 Sep 1;101(1992):81-8. https://doi.org/10.1111/j.1574-6968.1992.tb05764.x
 
Montagne L, Pluske JR, Hampson DJ. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim Feed Sci Technol. 2003 Aug 25;108(1-4):95-117. https://doi.org/10.1016/S0377-8401(03)00163-9
 
Mouille B, Robert V, Blachier F. Adaptive increase of ornithine production and decrease of ammonia metabolism in rat colonocytes and hyperproteic diet ingestion. Am J Physiol Gastrointest Liver Physiol. 2004 Aug;287(2):344-51. https://doi.org/10.1152/ajpgi.00445.2003
 
Noblet J, Le Goff GI. Effect of dietary fibre on the energy value of feeds for pigs. Anim Feed Sci Tech. 2001 Mar 15;90(1-2):35-52. https://doi.org/10.1016/S0377-8401(01)00195-X
 
Noblet J, Fortune H, Shi XS, Dubois S. Prediction of net energy value of feeds for growing pigs. J Anim Sci. 1994 Feb 1;72(2):344-54. https://doi.org/10.2527/1994.722344x
 
Nousiainen J, Suomi K. Comparative observations on selected probiotics and olaquindox used as feed additives for piglets around weaning. J Anim Physiol Anim Nutr. 1991 Sep-Dec;66(1-5):212-23. https://doi.org/10.1111/j.1439-0396.1991.tb00289.x
 
Nyachoti CM, Omogbenigun FO, Rademacher M, Blank G. Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets. J Anim Sci. 2006 Jan 1;84(1):125-34. https://doi.org/10.2527/2006.841125x
 
Patton CJ, Crouch SR. Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia. Anal Chem. 1977 Mar 1;49(3):464-9. https://doi.org/10.1021/ac50011a034
 
Pichler J, Schwarz C, Gierus M, Schedle K. Choice feeding in fattening pigs: Effect of diets differing in nutrient density on feeding behaviour and fattening performance. Czech J Anim Sci. 2020 Jul 30;65(7):247-57. https://doi.org/10.17221/111/2020-CJAS
 
Pierzynowski SG, Kruszewska D, Westrom BW. Chapter 3. The quality of dietary protein digestion affects animal performance and regulates gut bacteria growth: Hypotheses and facts. In: Mosenthin R, Zentek J, Zebrowska T, editors. Biology of growing animals. Amsterdam: Elsevier; 2006. p. 65-79.
 
Pryce JD. A modification of the Barker-Summerson method for the determination of lactic acid. Analyst. 1969;94(1125):1151-2. https://doi.org/10.1039/an9699401151
 
Rasmussen HS, Holtug K, Mortensen PB. Degradation of amino acids to short-chain fatty acids in humans: An in vitro study. Scand J Gastroenterol. 1988 Jan 1;23(2):178-82. https://doi.org/10.3109/00365528809103964
 
Saarinen MT. Determination of biogenic amines as dansyl derivatives in intestinal digesta and feces by reversed phase HPLC. Chromatographia. 2002 Mar 1;55(5-6):297-300. https://doi.org/10.1007/BF02491662
 
Sauvant D, Perez JM, Tran G. Tables of composition and nutritional value of feed materials: Pigs, poultry, cattle, sheep, goats, rabbits, horses and fish. Wageningen: Wageningen Academic Publishers; 2004. 304 p.
 
Schedle K. Sustainable pig and poultry nutrition by improvement of nutrient utilisation – A review. J Land Manag Food Environ. 2016 Mar 1;67(1):45-60. https://doi.org/10.1515/boku-2016-0005
 
Schedle K, Pfaffl MW, Plitzner C, Meyer HHD, Windisch W. Effect of insoluble fibre on intestinal morphology and mRNA expression pattern of inflammatory, cell cycle and growth marker genes in a piglet model. Arch Anim Nutr. 2008 Dec 1;62(6):427-38. https://doi.org/10.1080/17450390802479349
 
Slama J, Schedle K, Wurzer GK, Gierus M. Physicochemical properties to support fibre characterization in monogastric animal nutrition. J Sci Food Agric. 2019 Jun;99(8):3895-902. https://doi.org/10.1002/jsfa.9612
 
Slama J, Schedle K, Wetscherek W, Pekar D, Schwarz C, Gierus M. Effects of soybean hulls and lignocellulose on performance, nutrient digestibility, microbial metabolites and immune response in piglets. Arch Anim Nutr. 2020 May 3;74(3):173-88. https://doi.org/10.1080/1745039X.2019.1704174
 
Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001 Jul 1;81(3):1031-64. https://doi.org/10.1152/physrev.2001.81.3.1031
 
VDLUFA. Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik, Band III Die chemische Untersuchung von Futtermittel. 3th ed. Darmstadt, Germany: VDLUFA-Verlag; 2012. 2190 p. German.
 
Visek WJ. Diet and cell growth modulation by ammonia. Am J Clin Nutr. 1978 Oct 1;31(10):S216-20. https://doi.org/10.1093/ajcn/31.10.S216
 
Wenk C. The role of dietary fibre in the digestive physiology of the pig. Anim Feed Sci Tech. 2001 Mar 15;90(1-2):21-33. https://doi.org/10.1016/S0377-8401(01)00194-8
 
Zhao G, Nyman M, Jonsson JA. Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed Chromatogr. 2006 Aug;20(8):674-82. https://doi.org/10.1002/bmc.580
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti