Effect of tetramethylpyrazine on growth performance, Campylobacter jejuni carriage and endogenous antimicrobial peptides in rabbits

https://doi.org/10.17221/138/2019-CJASCitation:Ding K., Jiang Q., Wang J., Liu N., Zhang F. (2019): Effect of tetramethylpyrazine on growth performance, Campylobacter jejuni carriage and endogenous antimicrobial peptides in rabbits. Czech J. Anim. Sci., 64: 465-471.
download PDF

The present study aimed to investigate the effect of tetramethylpyrazine (TMP) supplementation on growth performance, Campylobacter jejuni (C. jejuni) carriage and antimicrobial peptides in the epithelial tissue of caecum and skin in rabbits. Five treatments included control and C. jejuni challenge with the addition of TMP at 0, 50, 100 or 150 mg/kg of diet. The trial lasted for 35 days and C. jejuni challenge occurred on first day of feeding trial. The results showed that C. jejuni challenge worsened (P < 0.05) feed intake, body weight gain and feed efficiency, whereas TMP supplementation partially compensated (P < 0.05) growth performance. C. jejuni populations in the caecal content and on the skin were decreased (P < 0.05) in the treatments containing TMP. The mRNA levels of antimicrobial peptides, including defensin neutrophil peptide 4, macrophage cationic peptide 2, galectin 3 and cathelicidin were also decreased (P < 0.05) by C. jejuni challenge while they were increased (P < 0.05) with supplemental TMP. Linear and quadratic trends (P ≤ 0.012) of the three doses of TMP were found in growth performance, linear trends (P ≤ 0.049) in C. jejuni carriage, and linear and quadratic trends (P ≤ 0.012) in galectin 3. The results suggest that TMP can partially protect from C. jejuni infection by decreasing C. jejuni carriage and activating epithelial antimicrobial peptides.

References:
Almeida F., Wolf J.M., da Silva T.A., DeLeon-Rodriguez C.M., Rezende C.P., Pessoni A.M., Fernandes F.F., Silva-Rocha R., Martinez R., Rodrigues M.L., Roque-Barreira M.C., Casadevall A. (2017): Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects. Nature Communications, 8, Article No. 1968. https://doi.org/10.1038/s41467-017-02126-7
 
Awad W.A., Aschenbach J.R., Ghareeb K., Khayal B., Hess C., Hess M. (2014): Campylobacter jejuni influences the expression of nutrient transporter genes in the intestine of chickens. Veterinary Microbiology, 172, 195–201. https://doi.org/10.1016/j.vetmic.2014.04.001
 
Awad W.A., Molnar A., Aschenbach J.R., Ghareeb K., Khayal B., Hess C., Liebhart D., Dublecz K., Hess M. (2015a): Campylobacter infection in chickens modulates the intestinal epithelial barrier function. Innate Immunity, 21, 151–160.  https://doi.org/10.1177/1753425914521648
 
Awad W.A., Smorodchenko A., Hess C., Aschenbach J.R., Molnar A., Dublecz K., Khayal B., Pohl E.E., Hess M. (2015b): Increased intracellular calcium level and impaired nutrient absorption are important pathogenicity traits in the chicken intestinal epithelium during Campylobacter jejuni colonization. Applied Microbiology and Biotechnology, 99, 6431–6441. https://doi.org/10.1007/s00253-015-6543-z
 
Ayyappan P., Harms R.Z., Buckner J.H., Sarvetnick N.E. (2019): Coordinated induction of antimicrobial response factors in systemic lupus erythematosus. Frontiers in Immunology, 10, 658. https://doi.org/10.3389/fimmu.2019.00658
 
Bednarski M., Wieliczko A., Mazurkiewicz M. (2011): Genetic comparison of Campylobacter jejuni isolated from different cattle farms. Polish Journal of Veterinary Sciences, 14, 279–281. https://doi.org/10.2478/v10181-011-0042-7
 
Chen J., Tian J., Ge H., Liu R., Xiao J. (2017): Effects of tetramethylpyrazine from Chinese black vinegar on antioxidant and hypolipidemia activities in HepG2 cells. Food and Chemical Toxicology, 109, 930–940. https://doi.org/10.1016/j.fct.2016.12.017
 
Cullere M., Dalle Zotte A. (2018): Rabbit meat production and consumption: State of knowledge and future perspectives. Meat Science, 143, 137–146.  https://doi.org/10.1016/j.meatsci.2018.04.029
 
Dalle Zotte A., Szendro Z. (2011): The role of rabbit meat as functional food. Meat Science, 88, 319–331. https://doi.org/10.1016/j.meatsci.2011.02.017
 
Donkor P.O., Chen Y., Ding L., Qiu F. (2016): Locally and traditionally used Ligusticum species – a review of their phytochemistry, pharmacology and pharmacokinetics. Journal of Ethnopharmacology, 194, 530–548. https://doi.org/10.1016/j.jep.2016.10.012
 
Feeley E.M., Pilla-Moffett D.M., Zwack E.E., Piro A.S., Finethy R., Kolb J.P., Martinez J., Brodsky I.E., Coers J. (2017): Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proceedings of the National Academy of Sciences of the United States of America, 114, 1698–1706. https://doi.org/10.1073/pnas.1615771114
 
Fei P., Ali M.A., Gong S., Sun Q., Bi X., Liu S., Guo L. (2018): Antimicrobial activity and mechanism of action of olive oil polyphenols extract against Cronobacter sakazakii. Food Control, 94, 289–294.  https://doi.org/10.1016/j.foodcont.2018.07.022
 
Fleischmann J., Selsted M.E., Lehrer R.I. (1985): Opsonic activity of MCP-1 and MCP-2, cationic peptides from rabbit alveolar macrophages. Diagnostic Microbiology and Infectious Disease, 3, 233–242. https://doi.org/10.1016/0732-8893(85)90035-5
 
Fruitwala S., El-Naccache D.W., Chang T.L. (2019): Multifaceted immune functions of human defensins and underlying mechanisms. Seminars in Cell and Developmental Biology, 88, 163–172. https://doi.org/10.1016/j.semcdb.2018.02.023
 
Hancock R.E.W., Falla T., Brown M. (1995): Cationic bactericidal peptides. Advances in Microbial Physiology, 37, 135–175.
 
Hendrikx T., Schnabl B. (2019): Antimicrobial proteins: Intestinal guards to protect against liver disease. Journal of Gastroenterology, 54, 209–217. https://doi.org/10.1007/s00535-018-1521-8
 
Kaakoush N.O., Castano-Rodriguez N., Mitchell H.M., Man S.M. (2015): Global epidemiology of Campylobacter infection. Clinical Microbiology Reviews, 28, 687–720. https://doi.org/10.1128/CMR.00006-15
 
Kim M., Kim S., Lee M., Lee J.H., Jung W., Moon S., Kim Y., Cho K., Ko C., Lee E.H. (2014): Tetramethylpyrazine, a natural alkaloid, attenuates pro-inflammatory mediators induced by amyloid β and interferon-γ in rat brain microglia. European Journal of Pharmacology, 740, 504–511. https://doi.org/10.1016/j.ejphar.2014.06.037
 
Laukova A., Pogany Simonova M., Kubasova I., Gancarcikova S., Placha I., Scerbova J., Revajova V., Herich R., Levkut M., Strompfova V. (2017): Pilot experiment in chickens challenged with Campylobacter jejuni CCM6191 administered enterocin M-producing probiotic strain Enterococcus faecium CCM8558 to check its protective effect. Czech Journal of Animal Science, 62, 491–500.  https://doi.org/10.17221/12/2017-CJAS
 
Liu N., Ru Y., Wang J., Xu T. (2010): Effect of dietary sodium phytate and microbial phytase on the lipase activity and lipid metabolism of broiler chickens. British Journal of Nutrition, 103, 862–868. https://doi.org/10.1017/S0007114509992558
 
Liu N., Wang J.Q., Liu Z.Y., Chen Y.K., Wang J.P. (2018): Tetramethylpyrazine attenuates necrotic enteritis by reducing gut oxidative stress, inflammation, opportunistic bacteria and endotoxins of broilers. European Poultry Science, 82, 233.
 
Liu N., Lin L., Wang J.Q., Zhang F.K., Wang J.P. (2019): Tetramethylpyrazine supplementation reduced Salmonella Typhimurium load and inflammatory response in broilers. Poultry Science, 98, 3158–3164. https://doi.org/10.3382/ps/pez128
 
Livak K.J., Schmittgen T.D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods, 25, 402–408.  https://doi.org/10.1006/meth.2001.1262
 
Mehmood K., Zhang H., Iqbal M.K., Rehman M.U., Li K., Huang S., Shahzad M., Nabi F., Iqbal M., Li J. (2018): Tetramethylpyrazine mitigates toxicity and liver oxidative stress in tibial dyschondroplasia chickens. Pakistan Veterinary Journal, 38, 76–80.  https://doi.org/10.29261/pakvetj/2018.015
 
Michel H.E., Tadros M.G., Esmat A., Khalifa A.E., Abdel-Tawab A.M. (2017): Tetramethylpyrazine ameliorates rotenone-induced Parkinson’s disease in rats: Involvement of its anti-inflammatory and anti-apoptotic actions. Molecular Neurobiology, 54, 4866–4878. https://doi.org/10.1007/s12035-016-0028-7
 
Revez J., Rossi M., Renzi M., Zanoni R.G. (2008): Occurrence of Campylobacter spp. in Italian rabbit farms. In: Proc. 9th World Rabbit Congress, Verona, Italy, 1051–1054.
 
Rukambile E., Sintchenko V., Muscatello G., Kock R., Alders R. (2019): Infection, colonization and shedding of Campylobacter and Salmonella in animals and their contribution to human disease: A review. Zoonoses and Public Health, 66, 562–578.  https://doi.org/10.1111/zph.12611
 
Shang Y., Ren F., Song Z., Li Q., Zhou X., Wang X., Xu Z., Bao G., Wan T., Lei T., Wang N., Jiao X., Huang J. (2016): Insights into Campylobacter jejuni colonization and enteritis using a novel infant rabbit model. Scientific Reports, 6, Article No. 28737. https://doi.org/10.1038/srep28737
 
Suarez-Carmona M., Hubert P., Delvenne P., Herfs M. (2015): Defensins: “simple” antimicrobial peptides or broad-spectrum molecules? Cytokine and Growth Factor Reviews, 26, 361–370. https://doi.org/10.1016/j.cytogfr.2014.12.005
 
Vieira M., Ferraz R., Fernandes R., Noronha J.P., Silva M., Prudencio C. (2007): Antimicrobial activity of pyrazine and quinoxaline N,N’-dioxide heterocyclic compounds. Microbiotec 07. Available at http://hdl.handle.net/10400.22/1984 (accessed May 3, 2019).
 
Wang J., Lin L., Li B., Zhang F., Liu N. (2019a): Dietary Artemisia vulgaris meal improved growth performance, gut microbes, and immunity of growing Rex rabbits. Czech Journal of Animal Science, 64, 174–179. https://doi.org/10.17221/162/2018-CJAS
 
Wang J., Liu N., Zhang F. (2019b): Tetramethylpyrazine protects oxidative stability and gelation property of rabbit myofibrillar proteins. Food Science of Animal Resources, 39, 623–631. https://doi.org/10.5851/kosfa.2019.e52
 
Xu W., Xu Q., Chen J., Lu Z., Xia R., Li G., Xu Z., Ma Y. (2011): Ligustrazine formation in Zhenjiang aromatic vinegar: Changes during fermentation and storing process. Journal of the Science of Food and Agriculture, 91, 1612–1617. https://doi.org/10.1002/jsfa.4356
 
Zhang M., Sun M.Y., Guo C.Y., Wang J.S., Xu F.Q., Yin H.J. (2019): Effect of tetramethylpyrazine and hyperlipidemia on hepcidin homeostasis in mice. International Journal of Molecular Medicine, 43, 501–506.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti