Effect of carboxymethyl chito-oligosaccharide on cysteine absorption in intestinal porcine epithelial cells

https://doi.org/10.17221/138/2021-CJASCitation:

Huang H.Y., Zhang C., Feng L.Q., Wang N.X., Wang K., Song Z.H., Gan L. (2022): Effect of carboxymethyl chito-oligosaccharide on cysteine absorption in intestinal porcine epithelial cells. Czech J. Anim. Sci., 67: 266–274.

supplementary materialdownload PDF

Oxidative stress is associated with retarded growth and the initiation and progression of diseases in pigs. The carboxymethylation of chito-oligosaccharide (COS) can improve its antioxidant activity for such issues. Herein, an orthogonal experiment L9 (34) test design was used to optimise the preparation conditions of carboxymethyl (CM)-COS. Fourier-transform infrared analysis evidenced the carboxymethylation of COS, and an in vitro study indicated that the hydroxyl radical scavenging ability of CM-COS is superior to that of COS. CM-COS can also better promote the absorption of cysteine and increase the expression of the amino acid transport system b0,+ in intestinal porcine epithelial cells. The results suggested that CM-COS can effectively resist oxidative damage by promoting cysteine absorption mediated by transport system b0,+, which provides important information regarding the antioxidative damage application of COS and CM-COS in the pig farming industry.

References:
Chen XG, Park HJ. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydr Polym. 2003 Sep 1;53(4):355-9.  https://doi.org/10.1016/S0144-8617(03)00051-1
 
Colas C, Grewer C, Gameiro A, Albers T, Singh K, Otte NJ, Shere H, Massimiliano B, Holst J, Schlessinger A. Ligand discovery for the alanine-serine-cysteine transporter (ASCT2, SLC1A5) from homology modeling and virtual screening. PLoS Comput Biol. 2015 Oct 7;11(10): 22 p.  https://doi.org/10.1371/journal.pcbi.1004477
 
Djuric DM. Editorial: Sulfur-containing amino acids in cardiovascular and neural physiology, pathophysiology and pharmacology: An overview and update. Curr Med Chem. 2018 Jan 1;25(3):322-3. https://doi.org/10.2174/092986732503180130142900
 
Engwa GA, Nweke FN, Nkeh-Chungag BN. Free radicals, oxidative stress-related diseases and antioxidant supplementation. Altern Ther Health Med. 2022 Jan 1;28(1):114-28.
 
Ji Y, Wu Z, Dai Z, Sun K, Zhang Q, Wu G. Excessive L-cysteine induces vacuole-like cell death by activating endoplasmic reticulum stress and mitogen-activated protein kinase signaling in intestinal porcine epithelial cells. Amino Acids. 2016 Jan;48(1):149-56.  https://doi.org/10.1007/s00726-015-2071-5
 
Kong X. Simultaneous determination of degree of deacetylation, degree of substitution and distribution fraction of –COONa in carboxymethyl chitosan by potentiometric titration. Carbohydr Polym. 2011 Dec;88(1):336-41.  https://doi.org/10.1016/j.carbpol.2011.12.019
 
Lauridsen C. From oxidative stress to inflammation: Redox balance and immune system. Poult Sci. 2019 Oct 1;98(10):4240-6. https://doi.org/10.3382/ps/pey407
 
Lauridsen C. Effects of dietary fatty acids on gut health and function of pigs pre- and post-weaning. J Anim Sci. 2020 Apr;98(4): 12 p. https://doi.org/10.1093/jas/skaa086
 
Luo J, Mills K, le Cessie S, Noordam R, van Heemst D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res Rev. 2020 Jan 1;57: 100982. https://doi.org/10.1016/j.arr.2019.100982
 
Malmezat T, Breuille D, Capitan P, Mirand PP, Obled C. Glutathione turnover is increased during the acute phase of sepsis in rats. J Nutr. 2000 May;130(5):1239-46.  https://doi.org/10.1093/jn/130.5.1239
 
Mi Y, Zhang J, Chen Y, Sun X, Tan W, Li Q, Guo Z. New synthetic chitosan derivatives bearing benzenoid/heterocyclic moieties with enhanced antioxidant and antifungal activities. Carbohydr Polym. 2020 Dec 1;249: 116847. https://doi.org/10.1016/j.carbpol.2020.116847
 
Narayanan D, Jayakumar R, Chennazhi KP. Versatile carboxymethyl chitin and chitosan nanomaterials: A review. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014 Nov;6(6):574-98. https://doi.org/10.1002/wnan.1301
 
No HK, Prinyawiwatkul W. Stability of chitosan powder during long-term storage at room temperature. J Agr Food Chem. 2009 Sep 23;57(18):8434-8.  https://doi.org/10.1021/jf902012t
 
Olanipekun EO, Ayodele O, Olatunde OC, Olusegun SJ. Comparative studies of chitosan and carboxymethyl chitosan doped with nickel and copper: Characterization and antibacterial potential. Int J Biol Macromol. 2021 Jul 31;183:1971-7. https://doi.org/10.1016/j.ijbiomac.2021.05.162
 
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015 Jun 5;97:55-74.  https://doi.org/10.1016/j.ejmech.2015.04.040
 
Sabaa MW, Mohamed NA, Mohamed RR, Khalil NM, Abd El Latif SM. Synthesis, characterization and antimicrobial activity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan. Carbohydr Polym. 2009 Oct 17;79(4):998-1005.  https://doi.org/10.1016/j.carbpol.2009.10.024
 
Scalise M, Pochini L, Pingitore P, Hedfalk K, Indiveri C. Cysteine is not a substrate but a specific modulator of human ASCT2 (SLC1A5) transporter. Febs Lett. 2015 Nov;589(23):3617-23.  https://doi.org/10.1016/j.febslet.2015.10.011
 
Shariatinia Z. Carboxymethyl chitosan: Properties and biomedical applications. Int J Biol Macromol. 2018 Dec 1;120(Pt B):1406-19. https://doi.org/10.1016/j.ijbiomac.2018.09.131
 
Song Z, Tong G, Xiao K, Jiao LF, Ke Y, Hu C. L-Cysteine protects intestinal integrity, attenuates intestinal inflammation and oxidant stress, and modulates NF-κB and Nrf2 pathways in weaned piglets after LPS challenge. Innate Immun. 2016 Apr;22(3):152-61.  https://doi.org/10.1177/1753425916632303
 
Sun T, Yao Q, Zhou DX, Mao F. Antioxidant activity of N-carboxymethyl chitosan oligosaccharides. Bioorg Med Chem Lett. 2008 Nov;18(21):5774-6.  https://doi.org/10.1016/j.bmcl.2008.09.072
 
Toz H, Deger Y. The effect of chitosan on the erythrocyte antioxidant potential of lead toxicity-induced rats. Biol Trace Elem Res. 2018 Jul;184(1):114-8.  https://doi.org/10.1007/s12011-017-1164-2
 
Treml J, Smejkal K. Flavonoids as potent scavengers of hydroxyl radicals. Compr Rev Food Sci F. 2016 Jul;15(4):720-38.  https://doi.org/10.1111/1541-4337.12204
 
Wahid F, Yin JJ, Xue DD, Xue H, Lu YS, Zhong C, Chu LQ. Synthesis and characterization of antibacterial carboxymethyl chitosan/ZnO nanocomposite hydrogels. Int J Biol Macromol. 2016 Jul;88:273-9.  https://doi.org/10.1016/j.ijbiomac.2016.03.044
 
Wang WC, Gu WT, Tang XF, Geng MM, Fan M, Li TJ, Chu WY, Shi CY, Huang RL, Zhang HF, Yin YL. Molecular cloning, tissue distribution and ontogenetic expression of the amino acid transporter b(0,+) cDNA in the small intestine of Tibetan suckling piglets. Comp Biochem Phys B. 2009 Sep;154(1):157-64.  https://doi.org/10.1016/j.cbpb.2009.05.014
 
Wang R, He M, Yuan XC, Yun Z. Study on the free radical scavenging activity of FRUCTUS MORI polysaccharides in vitro. Medicinal Plant. 2012 Oct;3(5):63-6.
 
Xiao H, Wu MM, Shao FY, Guan GP, Huang B, Tan B, Yin YL. N-Acetyl-L-cysteine protects the enterocyte against oxidative damage by modulation of mitochondrial function. Mediat Inflamm. 2016 Nov 27;2016: 8364279. https://doi.org/10.1155/2016/8364279
 
Xie C, Guo X, Long C, Fan Z, Xiao D, Ruan Z, Deng ZY, Wu X, Yin Y. Supplementation of the sow diet with chitosan oligosaccharide during late gestation and lactation affects hepatic gluconeogenesis of suckling piglets. Anim Reprod Sci. 2015 Aug 1;159:109-17. https://doi.org/10.1016/j.anireprosci.2015.06.004
 
Xie C, Wu X, Long C, Wang Q, Fan Z, Li S, Yin Y. Chitosan oligosaccharide affects antioxidant defense capacity and placental amino acids transport of sows. BMC Vet Res. 2016 Nov 2;12(1): 8 p. https://doi.org/10.1186/s12917-016-0872-8
 
Xiong X, Yang HS, Wang XC, Hu Q, Liu CX, Wu X, Deng D, Hou YQ, Nyachoti CM, Xiao DF, Yin YL. Effect of low dosage of chito-oligosaccharide supplementation on intestinal morphology, immune response, antioxidant capacity, and barrier function in weaned piglets. J Anim Sci. 2015 Mar 1;93(3):1089-97. https://doi.org/10.2527/jas.2014-7851
 
Xu C, Guan S, Xu J, Gong W, Liu T, Ma X, Sun C. Preparation, characterization and antioxidant activity of protocatechuic acid grafted carboxymethyl chitosan and its hydrogel. Carbohydr Polym. 2021 Jan 15;252: 117210. https://doi.org/10.1016/j.carbpol.2020.117210
 
Yang HS, Xiong X, Li JZ, Yin YL. Effects of chito-oligosaccharide on intestinal mucosal amino acid profiles and alkaline phosphatase activities, and serum biochemical variables in weaned piglets. Livest Sci. 2016 Aug 1;190:141-6.  https://doi.org/10.1016/j.livsci.2016.06.008
 
Yu R, de Saint-Cyr LC, Soussan L, Barboiu M, Li S. Anti-bacterial dynamic hydrogels prepared from O-carboxymethyl chitosan by dual imine bond crosslinking for biomedical applications. Int J Biol Macromol. 2021 Jan 15;167:1146-55. https://doi.org/10.1016/j.ijbiomac.2020.11.068
 
supplementary materialdownload PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti