Genetic parameters for clinical mastitis in Czech Holstein cattle

https://doi.org/10.17221/151/2020-CJASCitation:

Zavadilová L., Kašná E., Krupová Z., Brzáková M. (2020): Genetic parameters for clinical mastitis in Czech Holstein cattle. Czech J. Anim. Sci., 65: 463–472.

download PDF

Genetic parameters were estimated for clinical mastitis in Czech Holstein cattle. The datasets included 14 329 cows with 28 626 lactations. Clinical mastitis was defined as 0/1 occurrence per lactation. Single- or multi-trait repeatability linear animal models were employed for estimation of (co)variances and prediction of conventional or genomic breeding values. The inclusion of the random herd-year-month effect in the model was analysed. The estimated heritability for clinical mastitis ranged from 2.10% to 2.72%, while permanent environmental variance ratios or random herd-year-month effect ratios were twice higher than heritability. In the multi-trait models, udder type traits, such as fore udder attachment, rear udder attachment, rear udder width, front teat placement and udder depth, were employed. The highest genetic correlations of clinical mastitis occurred with rear udder width (0.41) and the lowest with front teat placement (–0.10). Both the multi-trait model and the genomic model provided breeding value estimates with higher reliability. In contrast, the model with random herd-year-season effects provided breeding values with lower accuracy.

References:
Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: A unified approach to utilise phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci. 2010 Feb;93(2):743-52. https://doi.org/10.3168/jds.2009-2730
 
Carlen E, Emanuelson U, Strandberg E. Genetic evaluation of mastitis in dairy cattle using linear models, threshold models and survival analysis: A simulation study. J Dairy Sci. 2006 Oct;89(10):4049-57. https://doi.org/10.3168/jds.S0022-0302(06)72448-1
 
Christensen OF, Lund MS. Genomic prediction when some animals are not genotyped. Genet Sel Evol. 2010 Jan 27;42(1): [8 p.]. https://doi.org/10.1186/1297-9686-42-2
 
Forni S, Aguilar I, Misztal I. Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genet Sel Evol. 2011 Jan 5;43(1): [7 p.]. https://doi.org/10.1186/1297-9686-43-1
 
Gengler N, Groen AF. Potential benefits from multitrait evaluation an example in selection for mastitis resistance based on somatic cell score and udder conformation. A simulation study. Interbull Bulletin. 1997 Jun;15:106-12.
 
Govignon-Gion A, Dassonneville R, Baloche G, Ducrocq V. Multiple trait genetic evaluation of clinical mastitis in three dairy cattle breeds. Animal. 2016 Apr;10(4):558-65. https://doi.org/10.1017/S1751731115002529
 
Heringstad B, Klemetsdal G, Ruane J. Responses to selection against clinical mastitis in the Norwegian Cattle population. Acta Agric Scand A Anim Sci. 2001;51(1):155-60.
 
Jamrozik J, Koeck A, Miglior F, Kistemaker GJ, Schenkel FS, Kelton DF, Van Doormaal BJ. Genetic and genomic evaluation of mastitis resistance in Canada. Interbull Bulletin. 2013 Aug 22;47:43-51.
 
Kasna E, Zavadilova L, Krupova Z, Slosarkova S, Fleischer P, Lipovsky D. National dairy cattle health recording in the Czech Republic. Book of abstracts of the 68th Annual Meeting of the European Federation of Animal Science; 2017 Aug 28-Sep 1; Tallinn (Estonia). Wageningen (The Netherlands); Wageningen Academic Publishers; 2017. p. 251.
 
Kasna E, Zavadilova L, Stipkova M. Genetic evaluation of the clinical mastitis traits in Holstein cattle. Czech J Anim Sci. 2018 Nov 7;63(11):443-51. https://doi.org/10.17221/105/2018-CJAS
 
Lund T, Miglior F, Dekkers JCM, Burnside EB. Genetic relationships between clinical mastitis, somatic cell count, and udder conformation in Danish Holsteins. Livest Prod Sci. 1994 Aug;39(3):243-51. https://doi.org/10.1016/0301-6226(94)90203-8
 
Madsen P, Jensen J. A user’s guide to DMU: A package for analysing multivariate mixed models [Internet]. Version 6, release 5.2. Tjele (Denmark): University of Aarhus; 2013 Nov [cited 2019 Jun 13]. 32 p. Available from: http://dmu.agrsci.dk/DMU/Doc/Current/dmuv6_guide.5.2.pdf.
 
Martin P, Barkema HW, Brito LF, Narayana SG, Miglior F. Novel strategies to genetically improve mastitis resistance in dairy cattle. J Dairy Sci. 2018 Mar 1;101(3):2724-36. https://doi.org/10.3168/jds.2017-13554
 
Negussie E, Lidauer M, Mantysaari EA. Genetic parameters and single versus multitrait evaluation of udder health traits. Acta Agric Scand A Anim Sci. 2006 Jun 1;56(2):73-82. https://doi.org/10.1080/09064700600979693
 
Negussie E, Lidauer M, Mantysaari EA, Stranden I, Poso J, Nielsen US, Johansson K, Eriksson JA, Aamand GP. Combining test day SCS with clinical mastitis and udder type traits: A random regression model for joint genetic evaluation of udder health in Denmark Finland and Sweden. Interbull Bulletin. 2010;42:25-32.
 
Nemcova E, Stipkova M, Zavadilova L. Genetic parameters for linear type traits in Holstein cattle. Czech J Anim Sci. 2011;56(4):157-62. https://doi.org/10.17221/1435-CJAS
 
Perez-Cabal MA, De Los Campos G, Vazquez AI, Gianola D, Rosa GJM, Weigel K, Alenda R. Genetic evaluation of susceptibility to clinical mastitis in Spanish Holstein cows. J Dairy Sci. 2009 Jul 1;92(7):3472-80. https://doi.org/10.3168/jds.2008-1978
 
Rupp R, Boichard D. Genetic parameters for clinical mastitis somatic cell score production udder type traits and milking ease in first lactation Holsteins. J Dairy Sci. 1999 Oct;82(10):2198-204. https://doi.org/10.3168/jds.S0022-0302(99)75465-2
 
Rupp R, Boichard D. Genetics of resistance to mastitis in dairy cattle. Vet Res. 2003 Sep;34(5):671-88. https://doi.org/10.1051/vetres:2003020
 
Schaeffer LR. Sire and cow evaluation under multiple trait models. J Dairy Sci. 1984 Jul;67(7):1567-80. https://doi.org/10.3168/jds.S0022-0302(84)81479-4
 
Schaeffer LR. Necessary changes to improve animal models. J Anim Breed Genet. 2018 Apr;135(2):124-31. https://doi.org/10.1111/jbg.12321
 
Seykora AJ, McDaniel BT. Udder and teat morphology related to mastitis resistance: A review. J Dairy Sci. 1985 Aug;68(8):2087-93. https://doi.org/10.3168/jds.S0022-0302(85)81072-9
 
Sorensen MK, Jensen J, Christensen LG. Udder conformation and mastitis resistance in Danish first-lactation cows: Heritabilities, genetic and environmental correlations. Acta Agric Scand A Anim Sci. 2000 Jun;50(2):72-82. https://doi.org/10.1080/09064700412331312311
 
Vitezica ZG, Aguilar I, Misztal I, Legarra A. Bias in genomic predictions for populations under selection. Genet Res. 2011 Oct;93(5):357-66. https://doi.org/10.1017/S001667231100022X
 
Wolf J, Wolfova M, Stipkova M. A model for the genetic evaluation of number of clinical mastitis cases per lactation in Czech Holstein cows. J Dairy Sci. 2010 Mar;93(3):1193-204. https://doi.org/10.3168/jds.2009-2443
 
Zavadilova L, Stipkova M, Sebkova N, Svitakova A. Genetic analysis of clinical mastitis data for Holstein cattle in the Czech Republic. Arch Anim Breed. 2015;58(1):199-204. https://doi.org/10.5194/aab-58-199-2015
 
Zavadilova L, Bauer J, Kasna E, Stipkova M. Genomic and conventional breeding values for clinical mastitis. Acta Fytotechn Zootechn. 2016 Sep 2;19(5):87-92. https://doi.org/10.15414/afz.2016.19.si.87-92
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti