Current challenges for trait economic values in animal breeding

https://doi.org/10.17221/161/2020-CJASCitation:

Krupová Z., Krupa E., Zavadilová L., Kašná E., Žáková E. (2020): Current challenges for trait economic values in animal breeding. Czech J. Anim. Sci., 65: 454–462.

download PDF

Modern selection approaches are expected to bring about the cumulative and permanent improvement of animal performance and profitability of animal production. Breeding values of traits along with trait economic values (EVs) are utilised for economic selection purposes with many species all over the world. Currently, some challenges related to trait EVs in animal breeding should be considered. First, the selection response based on the higher accuracy of genomic selection may be reduced due to improper weighting of the trait breeding values of selection candidates. A comprehensive approach applied in bioeconomic models allows suitable trait EV calculations. Further challenges comprise the new breeding objectives associated with climate change, environmental mitigation and animal adaptability. The estimation of EVs for traits influencing greenhouse gas (GHG) emissions has been mostly based on including the value of CO2 emission equivalent in the trait EVs, on calculating EVs for feed efficiency traits and on methane yield as a direct trait of GHG emission. Genetic improvement of production, functional, feed efficiency and methane traits through the application of multi-trait selection indices was found to be crucial for mitigation of emissions and farm profitability. Defining the non-market values of traits connected with climate protection could be a useful solution for including these traits in an economic breeding objective. While GHG emissions mostly change the costs per unit of production, animal adaptability in its complexity influences animal performance. Clear definitions of disease, fertility, mortality and other breeding objective traits allow the proper calculation of trait EVs, and an accurate estimation of trait genetic parameters could lead to sufficient economic selection response. This complex approach could be beneficial for more effective utilisation of inputs and overall economic and environmental sustainability of animal production.

References:
Aby BA, Aass L, Sehested E, Vangen O. Effect of incorporating greenhouse gas emission costs into economic values of traits for intensive and extensive beef cattle breeds. Livest Sci. 2013 Dec;158(1-3):1-11. https://doi.org/10.1016/j.livsci.2013.09.009
 
Ali BM, de Mey Y, Bastiaansen JWM, Oude Lansink AGJM. Effects of incorporating environmental cost and risk aversion on economic values of pig breeding goal traits. J Anim Breed Genet. 2018 Jun;135(3):194-207. https://doi.org/10.1111/jbg.12331
 
Amer PR, Hely FS, Quinton CD, Cromie AR. A methodology framework for weighting genetic traits that impact greenhouse gas emission intensities in selection indexes. Animal. 2018 Jan;12(1):5-11. https://doi.org/10.1017/S1751731117001549
 
Bell MJ, Eckard RJ, Haile-Mariam M, Pryce JE. The effect of changing cow production and fitness traits on net income and greenhouse gas emissions from Australian dairy systems. J Dairy Sci. 2013 Dec;96(12):7918-31. https://doi.org/10.3168/jds.2012-6289
 
Bell M, Pryce J, Wilson PA. A comparison of the economic value for enteric methane emissions with other biological traits associated with dairy cows. Amer Res J Agric. 2016 Feb;2:1-17.
 
Berry DP. Breeding strategies to reduce environmental footprint in dairy cattle. Adv Anim Biosci. 2013 Sep;4(1):28-36. https://doi.org/10.1017/S2040470013000289
 
Besson M, Komen H, Rose G, Vandeputte M. The genetic correlation between feed conversion ratio and growth rate affects the design of a breeding program for more sustainable fish production. Genet Sel Evol. 2020 Feb 7;52(1): [10 p.]. https://doi.org/10.1186/s12711-020-0524-0
 
Cassandro M. Animal breeding and climate change, mitigation and adaptation. J Anim Breed Gen. 2020 Mar;137(2):121-2. https://doi.org/10.1111/jbg.12469
 
Chaowu Y, Xiaosong J, Hurui D, Qingyun L, Zengrong Z, Mohan Q. Economic values for production systems of quality chicken in China. Modern Agric Sci Techn. 2016 Dec;2(2):36-45.
 
Chesnais JP, Cooper TA, Wiggans GR, Sargolzaei M, Pryce JE, Miglior F. Using genomics to enhance selection of novel traits in North American dairy cattle. J Dairy Sci. 2016 Mar;99(3):2413-27. https://doi.org/10.3168/jds.2015-9970
 
Fennessy PF, Byrne TJ, Proctor LE, Amer PR. The potential impact of breeding strategies to reduce methane output from beef cattle. Anim Prod Sci. 2019 Dec;59(9):1598-610. https://doi.org/10.1071/AN18186
 
Fuerst-Waltl B, Lang B, Fuerst C. Economic values for a total merit index of dairy goats in Austria. Die Bodenkultur: J Land Manag, Food Envir. 2018 Jul;69(2):97-104. https://doi.org/10.2478/boku-2018-0009
 
Gonzalez-Recio O, Pryce JE, Haile-Mariam M, Hayes BJ. Incorporating heifer feed efficiency in the Australian selection index using genomic selection. J Dairy Sci. 2014 Jun;97(6):3883-93. https://doi.org/10.3168/jds.2013-7515
 
Hazel LN. The genetic basis for constructing selection indexes. Genetics. 1943 Nov;28(6):476-90.
 
Hietala H, Juga J. Impact of including growth, carcass and feed efficiency traits in the breeding goal for combined milk and beef production systems. Animal. 2017 Apr;11(4):564-73. https://doi.org/10.1017/S1751731116001877
 
Hirooka H. Economic selection index in the genomic era. J Anim Breed Genet. 2019 Apr;136(3):151-2. https://doi.org/10.1111/jbg.12390
 
Konig S, May K. Invited review: Phenotyping strategies and quantitative-genetic background of resistance, tolerance and resilience associated traits in dairy cattle. Animal. 2019 May;13(5):897-908. https://doi.org/10.1017/S1751731118003208
 
Krupa E, Wolfova M, Krupova Z, Zakova E. Estimation of economic weights for number of teats and sperm quality traits in pigs. J Anim Breed Genet. 2020 Mar;137(2):189-99. https://doi.org/10.1111/jbg.12437
 
Krupova Z, Wolfova M, Krupa E, Pribyl J, Zavadilova L. Claw health and feed efficiency as new selection criteria in the Czech Holstein cattle. Czech J Anim Sci. 2018 Oct;63(10):408-18. https://doi.org/10.17221/44/2018-CJAS
 
Krupova Z, Krupa E, Wolfova M. Economic weights of current and new breeding objective traits in Aberdeen Angus. Czech J Anim Sci. 2020a Mar;65(3):77-85. https://doi.org/10.17221/255/2019-CJAS
 
Krupova Z, Wolfova M, Krupa E, Volek Z. Economic values of rabbit traits in different production systems. Animal. 2020b Sep;14(9):1943-51. https://doi.org/10.1017/S1751731120000683
 
Misztal I. Breeding and genetics symposium: Resilience and lessons from studies in genetics of heat stress. J Anim Sci. 2017 Apr;95(4):1780-7. https://doi.org/10.2527/jas2016.0953
 
Nguyen TTT, Bowman PJ, Haile-Mariam M, Nieuwhof GJ, Hayes BJ, Pryce JE. Short communication: Implementation of a breeding value for heat tolerance in Australian dairy cattle. J Dairy Sci. 2017 Sep;100(9):7362-7. https://doi.org/10.3168/jds.2017-12898
 
Pryce JE, Nguyen TTT, Axford M, Nieuwhof G, Shaffer M. Symposium review: Building a better cow – The Australian experience and future perspectives. J Dairy Sci. 2018 Apr;101(4):3702-13. https://doi.org/10.3168/jds.2017-13377
 
Richardson CM, Baes CF, Amer PR, Quinton C, Martin P, Osborne VR, Pryce JE, Miglior F. Determining the economic value of daily dry matter intake and associated methane emissions in dairy cattle. Animal. 2020 Jan;14(1):171-9. https://doi.org/10.1017/S175173111900154X
 
Wall E, Simm G, Moran D. Developing breeding schemes to assist mitigation of greenhouse gas emissions. Animal. 2010 Mar;4(3):366-76. https://doi.org/10.1017/S175173110999070X
 
Wang CT, Dickerson GE. A deterministic computer simulation model of life-cycle lamb and wool production. J Anim Sci. 1991 Nov;69(11):4312-23. https://doi.org/10.2527/1991.69114312x
 
Wolfova M, Wolf J. Strategies for defining traits when calculating economic values for livestock breeding: A review. Animal. 2013 Sep;7(9):1401-13. https://doi.org/10.1017/S1751731113001018
 
Wolfova M, Wolf J, Krupova Z, Margetin M. Estimation of economic values for traits of dairy sheep: II. Model application to a production system with one lambing per year. J Dairy Sci. 2009 May;92(5):2195-203. https://doi.org/10.3168/jds.2008-1412
 
Zhang X, Amer PR, Jenkins GM, Sise JA, Santos B, Quinton C. Prediction of effects of dairy selection indexes on methane emissions. J Dairy Sci. 2019 Dec;102(12):11153-68. https://doi.org/10.3168/jds.2019-16943
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti