Association of sodium butyrate and phytase on the performance, bone quality and intestinal development in broilers

https://doi.org/10.17221/184/2020-CJASCitation:

 Layter J.R., Buzim R., Fonseca G., Schuroff J.S., Glaeser L.P.S., Fernandes J.I.M. (2021): Association of sodium butyrate and phytase on the performance, bone quality and intestinal development in broilers. Czech J. Anim. Sci. 66(2021):368-380

download PDF

This study assessed the effect of the combination of microencapsulated sodium butyrate (SB) and phytase (PH) on the performance, intestinal integrity, and bone development of broilers. The experiment comprised 736 chicks distributed in a completely randomised design in a 2 × 2 factorial scheme (with and without the inclusion of SB and with the inclusion of PH at the recommended dose and superdosing) totalling four treatments and eight repetitions of 23 birds each. SB was added at 0.750 kg/tonne and PH was included at 750 phytase units (FTU)/kg and 1 500 FTU/kg of diet. The live weight (LW), feed intake (FI) and feed conversion (FC) were evaluated weekly. Bone measurements of the tibia and femur, densitometry, length, the Seedor index, and diameter were performed at seven and 28 days. In the same ages, fragments of the jejunum and ileum segments were collected and subjected to a morphometry analysis. At seven days of age, the birds supplemented with the phytase superdosing showed a better FI and LW, and the microencapsulated SB in the diet showed a better LW and FC. In the period from one to 28 days, the treatment supplemented with SB provided a higher FI and LW. The SB supplementation resulted in greater bone measurements at seven and 28 days. The use of the superdosing phytase increased the villus length and width of the jejunum at seven days and at 28 days. There was an increase in the villus length, villus-to-crypt ratio, absorption area, and muscular layer of the jejunum and a decrease in the crypt width of the jejunum. The SB supplementation increased the ileum crypt width at seven days and there was no effect on any intestinal segment at 28 days. The supplementation of SB or PH 1 500 FTU/kg in the broiler diets’ growth promoter or antibiotic-free resulted in a better performance and bone measurements, while the association of the additional PH 1 500 FTU/kg and SB supplementation resulted in the greater depth and width of the jejunum crypt and villus : ileum crypt at seven days and greater villus length and ileum absorption area at 28 days. The association of SB and PH may be a strategy to improve the performance and bone quality and intestinal integrity in broilers.

References:
Adil S, Banday T, Bhat GA, Salahuddin M, Raquib M, Shanaz S. Response of broiler chicken to dietary supplementation of organic acids. J Cent Eur Agric. 2011 Nov 8;12(3):498-508. https://doi.org/10.5513/JCEA01/12.3.947
 
Ahsan U, Cengiz O, Raza I, Kuter E, Chacher MFA, Iqbal Z. Sodium butyrate in chicken’s nutrition: The dynamics of performance, gut microbiota, gut morphology, and immunity. Worlds Poult Sci J. 2016 Jun;72(2):265-75.  https://doi.org/10.1017/S0043933916000210
 
Bortoluzzi C, Pedroso AA, Mallo JJ, Puyalto M, Kim WK, Applegate TJ. Sodium butyrate improved perfor-mance while modulating the cecal microbiota and regulating the expression of intestinal immune-related genes of broiler chickens. Poult Sci. 2017 Nov 1;96(11):3981-93. https://doi.org/10.3382/ps/pex218
 
Chamba F, Puyalto M, Ortiz A, Torrealba H, Mallo JJ, Riboty R. Effect of partially protected sodium butyrate on performance, digestive organs, ıntestinal villi and E. coli development in broilers chickens. Int J Poult Sci. 2014 Jul 1;13(7):390-6. https://doi.org/10.3923/ijps.2014.390.396
 
Cowieson AJ, Wilcock P, Bedford MR. Super-dosing effect of phytase in poultry and other monogastrics. Worlds Poult Sci J. 2011 Jun;67(2):225-36.  https://doi.org/10.1017/S0043933911000250
 
Cowieson AJ, Ptak A, Mackowiak P, Sassek M, Pruszynska-Oszmalek E, Zyla K, Swiatkiewicz S, Kaczmarek S, Jozefiak D. The effect of microbial phytase and myo-inositol on performance and blood biochemistry of broiler chickens fed what/corn-based diets. Poult Sci. 2013 Aug 1;92(8):2124-34.  https://doi.org/10.3382/ps.2013-03140
 
Cowieson AJ, Ruckebusch JP, Knap I, Guggenbuhl P, Fru-Nji F. Phytate-free nutrition: A new paradigm in monogastric animal production. Anim Feed Sci Technol. 2016 Dec 1;222(1):180-9. https://doi.org/10.1016/j.anifeedsci.2016.10.016
 
Croze ML, Soulage CO. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie. 2013 Oct 1;95(10):1811-27.  https://doi.org/10.1016/j.biochi.2013.05.011
 
Diao H, Jiao AR, Yu B, Mao XB, Chen DW. Gastric infusion of short-chain fatty acids can improve intestinal barrier function in weaned piglets. Genes Nutr. 2019 Dec;14(1): 16 p.  https://doi.org/10.1186/s12263-019-0626-x
 
Ghazala AA, Atta AM, Elkloub K, Mustafa MEL, Shata RFH. Effect of dietary supplementation of organic acids on performance, nutrientes digestibility and health of broiler chicks. Int J Poult Sci. 2011;10(3):176-84. https://doi.org/10.3923/ijps.2011.176.184
 
Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielskl R, Van Immerseel F. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr Res Ver. 2010 Dec;23(2):366-84.  https://doi.org/10.1017/S0954422410000247
 
Haque MN, Chowdry R, Islam KMS, Akbar MA. Propionic acid as an alternative to antibiotics in poultry diet. Bangladesh J Anim Sci. 2009;38(1-2):115-22. https://doi.org/10.3329/bjas.v38i1-2.9920
 
Katono T, Kawato T, Tanabe N, Suzuki N, Iida T, Morozumi A, Ochiai K, Maeno M. Sodium butyrate stimulates mineralized nodule formation and osteoprotegerin expression by human osteoblasts. Arch Oral Biol. 2008 Oct 1;53(10):903-9. https://doi.org/10.1016/j.archoralbio.2008.02.016
 
Kisielinski K, Willis S, Prescher A. A simple new method to calculate small intestine absorptive surface in the rat. Clin Exp Med. 2002 Nov;2(3):131-5. https://doi.org/10.1007/s102380200018
 
Lalpanmawia H, Elangovan AV, Sridhar M, Shet D, Ajith S, Pal DT. Efficacy of phytase on growth performance, nutrient utilization and bone mineralization in broiler chicken. Anim Feed Sci Technol. 2014 Jun 1;192:81-9. https://doi.org/10.1016/j.anifeedsci.2014.03.004
 
Lee AS, Nagalakshmi D, Raju MVLN, Rao SVR, Bedford MR. Effect of phytase superdosing, myo-inositol and available phosphorus concentrations on performance and bone mineralization in broilers. Anim Nutr. 2017 Sep 1;3(3):247-51. https://doi.org/10.1016/j.aninu.2017.07.002
 
Manobhavan M, Elangovan AV, Sridhar M, Shet D, Ajith S, Pal DT, Gowda NKS. Effect of super dosing of phytase on growth performance, ileal digestibility and bone characteristics in broilers fed corn-soya-based diets. J Anim Physiol Anim Nutr. 2016 Feb;100(1):93-100. https://doi.org/10.1111/jpn.12341
 
Mansoub NH. Comparative effect of butyric acid, probiotic and garlic on performance and serum composition of broiler chickens. Am Eurasian J Agric Environ Sci. 2011 May;11:507-11.
 
Mehdi Y, Letourneau-Montminy MP, Gaucher ML, Chorfi Y, Suresh G, Rouissi T, Brar SK, Cote C, Ramirez AA, Godbout S. Use of antibiotics in broiler production: Global impacts and alternatives. Anim Nutr. 2018 Jun 1;4(2):170-8. https://doi.org/10.1016/j.aninu.2018.03.002
 
Montagne L, Boudry G, Favier C, Le Huerou-Luron I, Lalles JP, Seve B. Main intestinal markers associated with the changes in gut architecture and function in piglets after weaning. Br J Nutr. 2007 Jan;97(1):45-57.  https://doi.org/10.1017/S000711450720580X
 
Onrust L, Ducatelle R, Van Driessche K, De Maesschalck C, Vermeulen K, Haesebrouck F, Eeckaut V, Van Immersel F. Steering endogenous butyrate production in the intestinal tract of broilers as a tool to improve gut health. Front Vet Sci. 2015 Dec 17;2: 8 p. https://doi.org/10.3389/fvets.2015.00075
 
Sakomura NK, Rostagno HS. Metodos de pesquisa em nutricao de monogastricos [Research methods in nutrition of monogastrics]. 2nd ed. Jaboticabal: Funep. 2016; 283 p. Portuguese.
 
Sayrafi R, Soltanalinejad F, Shahrooz R, Rahimi S. Comparative study of the effect of alternative and antibiotic feed additives on the performance and intestinal histo-morphometrical parameters of broiler chickens. Afr J Agric Res. 2011 Jun 18;6(12):2794-9.
 
Seedor JG, Quartuccio HA, Thompson DD. The bisphosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. J Bone Miner Res. 1991 Apr;6(4):339-46. https://doi.org/10.1002/jbmr.5650060405
 
Sikandar A, Zaneb H, Younus M. Effect of sodium butyrate on performance, immune status, microarchitecture of small intestinal mucosa and lymphoid organs in broiler chickens. Asian-Australas J Anim Sci. 2017 May;30(5):690-9. https://doi.org/10.5713/ajas.16.0824
 
Sommerfeld V, Kunzel S, Schollenberg M, Kuhn I, Rodehutscord M. Influence of phytase or myo-inositol supplements on performance and phytate degradation products in the crop, ileum, and blood of broiler chickens. Poult Sci. 2018 Mar 1;97(3):920-9. https://doi.org/10.3382/ps/pex390
 
Van Immerseel F, Fievez V, De Buck J, Pasmans F, Martel A, Haesebrouck F, Ducatelle R. Microencapsulated short-chain fatty acids in feed modify colonization and invasion early after infection with Salmonella enteritidis in young chickens. Poult Sci. 2004 Jan 1;83(1):69-74. https://doi.org/10.1093/ps/83.1.69
 
Walk CL, Santos TT, Bedford MR. Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poult Sci. 2014 May 1;93(5):1172-7. https://doi.org/10.3382/ps.2013-03571
 
Wu W, Xiao Z, An W, Dong Y, Zhang B. Dietary sodium butyrate improves intestinal development and function by modulating the microbial community in broilers. PLoS One. 2018 May 24;13(5): 21 p. https://doi.org/10.1371/journal.pone.0197762
 
Ziaie H, Bashtani M, Karimi TMA, Naeeimipour H, Farhangfar H, Zeinai A. Effect of antibiotic and its alternatives on morphometric characteristics, mineral content and bone strength of tibia in Ross broiler chickens. Global Vet. 2011;7(4):315-22.
 
Zou X, Ji J, Qu H, Wang J, Shu DM, Wang Y, Liu TF, Li Y, Luo CL. Effects of sodium butyrate on intestinal health and gut microbiota composition during intestinal inflammation progression in broilers. Poult Sci. 2019 Oct 1;98(10):4449-56. https://doi.org/10.3382/ps/pez279
 
 
54-2021
 
Effects of ozonation on water quality and pikeperch (Sander lucioperca) performance in a recirculating aquaculture system
 
JITKA KOLÁŘOVÁ1*, JIŘÍ KŘIŠŤAN1,2, OLEKSANDR MALINOVSKYI1, JOSEF VELÍŠEK1, ALŽBĚTA STARÁ1, SAMAD RAHIMNEJAD1, TOMÁŠ POLICAR1
 
1Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
 
2Department of Ecology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
 
*Corresponding author: kolarova@frov.jcu.cz
 
Citation: Kolářová J., Křišťan J., Malinovskyi O., Velíšek J., Stará A., Rahimnejad S., Policar T. (2021): Effects of ozonation on water quality and pikeperch (Sander lucioperca) performance in a recirculating aquaculture system. Czech J. Anim. Sci. https://doi.org/10.17221/54/2021-CJAS
 
Abstract: The aim of this study was to examine the effects of ozonation on the water quality, and growth, blood biochemistry, antioxidant capacity and survival of pikeperch (Sander lucioperca) reared in a recirculation aquaculture system for 30 weeks. A group without ozone treatment was used as a control. The ozone application led to a significant reduction of the water chemical oxygen demand, biological oxygen demand and unsuspended solids concentration. The results revealed that an ozone treatment as a water treatment method has a positive influence on the intensive culture of pikeperch ensuring a higher survival rate (77%) compared to the non-treated control group (67.2%). Moreover, the ozonation prevented fin damage to a large extent and reduced the prevalence of an Ichthyophthirius multifiliis infection. Furthermore, the ozone application led to a reduction in the thiobarbituric acid reactive substance level and enhanced the superoxide dismutase activity in the fish gills. However, the effect of ozonation was null on the plasma biochemical parameters. Overall, these findings suggest that an ozone treatment, using adequate technological equipment to destroy the residual ozone, improves the water quality and protects pikeperch against any possible infection and fin damage in a recirculation aquaculture system.
 
Keywords: blood biochemistry; oxidative stress; survival; body condition; health condition
 
 
REFERENCES
 
Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar 1;195(1):133-40. https://doi.org/10.1016/S0021-9258(19)50881-X
 
Bullock GL, Summerfelt ST, Noble AC, Weber AL, Durant MD, Hankins JA. Ozonation of a recirculating rainbow trout culture system. I. Effects on bacterial gill disease and heterotrophic bacteria. Aquaculture. 1997 Dec 1;158(1-2):43-55. https://doi.org/10.1016/S0044-8486(97)00063-X
 
Carlberg I, Mannervik B. Purification and characterization of flavoenzyme glutathione reductase from rat liver. J Biol Chem. 1975 Jul 25;250(14):5475-80. https://doi.org/10.1016/S0021-9258(19)41206-4
 
Chen CHY, Wooster GA, Getchell RG, Bowser PR, Timmons MB. Blood chemistry of healthy, nephrocalcinosis-affected and ozone-trate tilapia in recirculation system, with application of diskriminant analysis. Aquaculture. 2003 Mar 27;218(1-4):89-102. https://doi.org/10.1016/S0044-8486(02)00499-4
 
Davidson J, Good C, Welsh C, Summerfelt S. The effects of ozone and water exchange rates on water quality and rainbow trout Oncorhynchus mykiss performance in replicated water recirculating systems. Aquacult Eng. 2011 May 1;44(3):80-96. https://doi.org/10.1016/j.aquaeng.2011.04.001
 
Ferrari A, Venturino A, de D’Angelo AMP. Effects of carbaryl and azinphos methylon juvenile rainbow trout (Oncorhynchus mykiss) detoxifying enzymes. Pestic Biochem Physiol. 2007 Jun 1;88(2):134-42. https://doi.org/10.1016/j.pestbp.2006.10.005
 
Goncalves AA, Gagnon GA. Ozone application in recirculating aquaculture system: An overview. Ozone Sci Eng. 2011 Sep 1;33(5):345-67. https://doi.org/10.1080/01919512.2011.604595
 
Good C, Davidson J, Welsh C, Snekvik K, Summerfelt S. The effects of ozonation on performance, health and welfare of rainbow trout Oncorhynchus mykiss in low-exchange water recirculation aquaculture systems. Aquacult Eng. 2011 May 1;44(3):97-102. https://doi.org/10.1016/j.aquaeng.2011.04.003
 
Habig WH, Pabst WB, Jakoby J. Glutathione S-transferases – First enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130-9. https://doi.org/10.1016/S0021-9258(19)42083-8
 
Kasai H, Yoshimizu M, Ezura Y. Disinfection of water for aquaculture. Fisheries Sci. 2002 Apr;68:821-4. https://doi.org/10.2331/fishsci.68.sup1_821
 
Kristan J, Stara A, Polgesek M, Drasovean A, Kolarova J, Priborsky J, Blecha M, Svacina P, Policar T, Velisek J. Efficacy of different anaesthetics for pikeperch (Sander lucioperca L.) in relation to water temperature. Neuroendocrinol Lett. 2014 Nov 30;35(Suppl. 2):81-5.
 
Lee R, Lovatelli A, Ababouch L. Water treatment methods. In: Lee R, Lovatelli A, Ababouch L, editors. FAO fisheries technical paper No. 511. Bivalve depuration: Fundamental and practical aspects. Rome: Food and Agriculture Organization of the United Nations; 2008. Chapter 6. p. 33-8.
 
Li X, Przybyla C, Triplet S, Liua Y, Blancheton JP. Long-term effects of moderate elevation of oxidation–reduction potential on European seabass (Dicentrarchus labrax) in recirculating aquaculture systems. Aquacult Eng. 2015 Jan 1;64:15-9. https://doi.org/10.1016/j.aquaeng.2014.11.006
 
Liltved H, Vogelsang C, Modahl I, Dannevig BH. High resistance of fish pathogenic viruses to UV irradiation and ozonated seawater. Aquacult Eng. 2006 Mar 1;34(2):72-82.
 
Lushchak VI, Bagnyukova TV, Husak VV, Luzhna LI, Lushchak OV, Storey KB. Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int J Biochem Cell Biol. 2005 Aug 1;37(8):1670-80. https://doi.org/10.1016/j.biocel.2005.02.024
 
Marklund S, Marklund G. Involvement of superoxide anion radical in autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem.1974 Sep;47(3):469-74. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
 
Policar T, Stejskal V, Kristan J, Podhorec P, Svinger V, Blaha M. The effect of fish size and density on the weaning success in pond-cultured pikeperch (Sander lucioperca L.) juveniles. Aquacult Int. 2013 Aug;21(4):869-82. https://doi.org/10.1007/s10499-012-9563-z
 
Policar T, Blecha M, Kristan J, Mraz J, Velisek J, Stara A, Stejskal V, Malinovskyi O, Svacina P, Samarin AM. Comparison of production efficiency and quality of differently cultured pikeperch (Sander lucioperca L.) juveniles as a valuable product for ongrowing culture. Aquacult Int. 2016 Aug 17;24(6):1607-26. https://doi.org/10.1007/s10499-016-0050-9
 
Policar T, Kristan J, Hampl J, Blecha M, Kolarova J. Provozni manual slouzici k efektivnimu provozu intenzivni akvakultury vyuzivajici RAS [Handbook for an effective using of intensive Aquaculture facility using RAS]. Vodnany: FFPW USB; 2018 Nov. 54 p. Czech.
 
Policar T, Schaefer F, Panana E, Meyer S, Teerlinck S, Toner D, Zarski D. Recent progress in European percid fish culture production technology – Tackling bottlenecks. Aquacult Int. 2019 Jul 16;27(5):1151-74. https://doi.org/10.1007/s10499-019-00433-y
 
Read P. Ozone in Recirculating Aquaculture, New South Wales Department of Primary Industries – Fishing and Aquaculture. New South Wales, Australia, 2008. Available at: Access on October 07.
 
Ritola O, Lyytikainen T, Pylkko P, Molsa H, Lindstrom-Seppa P. Glutathione-dependent defence system and monooxygenase enzyme activities in Arctic charr Salvelinus alpinus (L.) exposed to ozone. Aquaculture. 2000 May 25;185(3-4):219-33.  https://doi.org/10.1016/S0044-8486(99)00355-5
 
Schroeder JP, Klatt SF, Schlachter M, Zablotski Y, Keuter S, Spieck E, Schulz C. Impact of ozonation and residual ozone-produced oxidants on the nitrification performance of moving-bed biofilters from marine recirculating aquaculture systems. Aquacult Eng. 2015 Mar 1;65:27-36. https://doi.org/10.1016/j.aquaeng.2014.10.008
 
Silva J, Laranjeira A, Serradeiro R, Santos MA, Pacheco M. Ozonated seawater induces genotoxicity and hematological alternations in turbot (Scophthalmus maximus) – Implications for management of recirculations. Aquaculture. 2011 Jul 27;318(1-2):180-4.
 
Skowron K, Walecka-Zacharska E, Grudlewska K, Bialucha A, Wiktorczyk N, Bartkowska A, Kowalska M, Kruszewski S, Gospodarek-Komkowska E. Biocidal effectiveness of selected disinfectants solutions based on water and ozonated water against Listeria monocytogenes strains. Microrganisms. 2019 May;7(5): 18 p. https://doi.org/10.3390/microorganisms7050127
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti