Effect of sex and dietary treatment on the composition and rheological properties of dry-cured ham subcutaneous fat

https://doi.org/10.17221/18/2016-CJASCitation:Segura Plaza J.F., Escudero R., Romero de Ávila M.D., Olivares Á., Cambero M.I., López-Bote C.J. (2017): Effect of sex and dietary treatment on the composition and rheological properties of dry-cured ham subcutaneous fat. Czech J. Anim. Sci., 62: 110-120.
download PDF
The effect of sex, dietary fat source (lard vs palm oil), and glycerol inclusion in fattening diet on the composition, fatty acid distribution within the triglyceride (TAG) and slip point and textural parameters was studied on dry-cured hams subcutaneous fat. A marked effect of sex on saturated fatty acids (SFA) percentage was found with barrows showing higher values than gilts. No effect of dietary fat source on subcutaneous SFA or polyunsaturated fatty acids (PUFA) was observed. Dietary glycerol increased monounsaturated fatty acids and decreased total PUFA in subcutaneous fat. Besides, the possibility of altering fatty acid composition at the 2-position of the TAG by dietary intervention during the fattening phase is very limited. Partial restructuration was observed in external positions of the TAG. All these changes affected slip point and textural parameters. An increase of hardness when palm oil was used as dietary fat and a decrease in all textural parameters values when glycerol was included were observed.
References:
AOAC (2006): Official Methods of Analysis of AOAC International. 17th Ed. Association of Official Analytical Chemists, Gaithersburg, USA.
 
Berry Sarah E. E. (2009): Triacylglycerol structure and interesterification of palmitic and stearic acid-rich fats: an overview and implications for cardiovascular disease. Nutrition Research Reviews, 22, 3-  https://doi.org/10.1017/S0954422409369267
 
Bourne M.C. (1978): Texture profile analysis. Food Technology, 32, 62–66.
 
Čandek-Potokar M., Škrlep M. (2012): Factors in pig production that impact the quality of dry-cured ham: a review. animal, 6, 327-338  https://doi.org/10.1017/S1751731111001625
 
Daza A., Menoyo D., Lopez Bote C.J. (): Carcass Traits and Fatty Acid Composition of Subcutaneous, Intramuscular and Liver Fat from Iberian Pigs Fed in Confinement only with Acorns or a Formulated Diet. Food Science and Technology International, 15, 563-569  https://doi.org/10.1177/1082013209352928
 
De Blas C., Gasa J., Mateos G.G. (2013): Nutrient Requirements of Swine. Spanish Foundation for the Development of Animal Nutrition (FEDNA), Madrid, Spain. (in Spanish)
 
FARNWORTH E. R., KRAMER J. K. G. (1987): FAT METABOLISM IN GROWING SWINE: A REVIEW. Canadian Journal of Animal Science, 67, 301-318  https://doi.org/10.4141/cjas87-029
 
Gouk Shiou Wah, Cheng Sit Foon, Mok Josephine Shiueh Lian, Ong Augustine Soon Hock, Chuah Cheng Hock (2013): Long-chain SFA at the sn-1, 3 positions of TAG reduce body fat deposition in C57BL/6 mice. British Journal of Nutrition, 110, 1987-1995  https://doi.org/10.1017/S0007114513001475
 
Hallenstvedt E., Kjos N.P., Øverland M., Thomassen M. (2012): Changes in texture, colour and fatty acid composition of male and female pig shoulder fat due to different dietary fat sources. Meat Science, 90, 519-527  https://doi.org/10.1016/j.meatsci.2011.08.009
 
Hugo Arno, Roodt Eileen (2007): Significance of Porcine Fat Quality in Meat Technology: A Review. Food Reviews International, 23, 175-198  https://doi.org/10.1080/87559120701225037
 
Innis Sheila M., Nelson Carolanne M. (2013): Dietary triacyglycerols rich in sn-2 palmitate alter post-prandial lipoprotein and unesterified fatty acids in term infants. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 89, 145-151  https://doi.org/10.1016/j.plefa.2013.03.003
 
Innis S.M., Dyer R.A., Lien E.L. (1997): Formula containing randomized fats with palmitic acid (C16:0) in the 2-position increases 16:0 in the 2-position of plasmas and chylomicron triglycerides in formula-fed piglets to levels approaching those of piglets fed sow’s milk. Journal of Nutrition, 127, 1362–1370.
 
Kijora C., Kupsch R.-D., Bergner H., Wenk C., Prabucki A. L. (1997): Vergleichende Untersuchung zum Einsatz von Glycerin, freien Fettsäuren, freien Fettsäuren und Glycerin sowie pflanzlichem Öl in der Schweinemast. Journal of Animal Physiology and Animal Nutrition, 77, 127-138  https://doi.org/10.1111/j.1439-0396.1997.tb00747.x
 
Kosmider A., Leja K., Czaczyk K. (2011): Improved utilization of crude glycerol by-product from biodiesel production. In: Montero G. (ed.): Biodiesel - Quality, Emissions and By-products. InTech, Rijeka, Croatia, 341–364.
 
Latorre M. A., Ripoll G., Garcia-Belenguer E., Arino L. (2009): The increase of slaughter weight in gilts as a strategy to optimize the production of Spanish high quality dry-cured ham. Journal of Animal Science, 87, 1464-1471  https://doi.org/10.2527/jas.2008-1362
 
Lea C. H., Swoboda P. A. T., Gatherum D. P. (1970): A chemical study of soft fat in cross-bred pigs. The Journal of Agricultural Science, 74, 279-  https://doi.org/10.1017/S0021859600022899
 
Lopez-Bote C. J., Isabel B., A. Daza (2002): Partial replacement of poly- with monounsaturated fatty acids and vitamin E supplementation in pig diets: effect on fatty acid composition of subcutaneous and intramuscular fat and on fat and lean firmness. Animal Science, 75, 349-358  https://doi.org/10.1017/S1357729800053121
 
Mitchaothai J., Yuangklang C., Wittayakun S., Vasupen K., Wongsutthavas S., Srenanul P., Hovenier R., Everts H., Beynen A.C. (2007): Effect of dietary fat type on meat quality and fatty acid composition of various tissues in growing–finishing swine. Meat Science, 76, 95-101  https://doi.org/10.1016/j.meatsci.2006.10.017
 
Morales R., Serra X., Guerrero L., Gou P. (2007): Softness in dry-cured porcine biceps femoris muscles in relation to meat quality characteristics and processing conditions. Meat Science, 77, 662-669  https://doi.org/10.1016/j.meatsci.2007.05.020
 
Mourot J, Aumaitre A, Mounier A, Peiniau P, François A.C (1994): Nutritional and physiological effects of dietary glycerol in the growing pig. Consequences on fatty tissues and post mortem muscular parameters. Livestock Production Science, 38, 237-244  https://doi.org/10.1016/0301-6226(94)90175-9
 
Narváez-Rivas Mónica, Vicario Isabel M., Constante E. Graciani, León-Camacho Manuel (2007): Changes in the Concentrations of Free Fatty Acid, Monoacylglycerol, and Diacylglycerol in the Subcutaneous Fat of Iberian Ham during the Dry-Curing Process. Journal of Agricultural and Food Chemistry, 55, 10953-10961  https://doi.org/10.1021/jf071886u
 
Nishioka T., Irie M. (2005): Evaluation method for firmness and stickiness of porcine perirenal fat. Meat Science, 70, 399-404  https://doi.org/10.1016/j.meatsci.2005.01.021
 
Nuernberg Karin, Dannenberger D., Nuernberg G., Ender K., Voigt J., Scollan N.D., Wood J.D., Nute G.R., Richardson R.I. (2005): Effect of a grass-based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissimus muscle in different cattle breeds. Livestock Production Science, 94, 137-147  https://doi.org/10.1016/j.livprodsci.2004.11.036
 
Perona J.S., Ruiz-Gutierrez V. (2004): Analysis of neutral lipids: triacylglycerols. In: Nollet L.M.L. (ed.): Handbook of Food Analysis. Marcel Decker, New York, USA, 275–312.
 
Piedrafita J, Christian L.L, Lonergan S.M (2001): Fatty acid profiles in three stress genotypes of swine and relationships with performance, carcass and meat quality traits. Meat Science, 57, 71-77  https://doi.org/10.1016/S0309-1740(00)00078-4
 
Romero de Ávila M. Dolores, Escudero Rosa, Ordóñez Juan A., Isabel Cambero M. (2014): Weibull analysis characterizes the breaking properties of dry-cured ham slices. Meat Science, 97, 451-458  https://doi.org/10.1016/j.meatsci.2014.02.013
 
Schieck S. J., Shurson G. C., Kerr B. J., Johnston L. J. (): Evaluation of glycerol, a biodiesel coproduct, in grow-finish pig diets to support growth and pork quality. Journal of Animal Science, 88, 3927-3935  https://doi.org/10.2527/jas.2010-2858
 
Segura J., Lopez-Bote C.J. (2014): A laboratory efficient method for intramuscular fat analysis. Food Chemistry, 145, 821-825  https://doi.org/10.1016/j.foodchem.2013.08.131
 
Segura J., Cambero M.I., Camara L., Loriente C., Mateos G.G., Lopez-Bote C.J. (2015a): Effect of sex, dietary glycerol or dietary fat during late fattening on fatty acid composition and positional distribution of fatty acids within the triglyceride in pigs. Animal, 14, 1–8.
 
Segura J., Escudero R., Romero de Avila M.D., Cambero M.I., Lopez-Bote C.J. (2015b): Effect of fatty acid composition and positional distribution within the triglyceride on selected physical properties of dry-cured ham subcutaneous fat. Meat Science, 103, 90–95.
 
Serra X., Ruiz-Ramírez J., Arnau J., Gou P. (2005): Texture parameters of dry-cured ham m. biceps femoris samples dried at different levels as a function of water activity and water content. Meat Science, 69, 249-254  https://doi.org/10.1016/j.meatsci.2004.07.004
 
Small D M (1991): The Effects of Glyceride Structure on Absorption and Metabolism. Annual Review of Nutrition, 11, 413-434  https://doi.org/10.1146/annurev.nu.11.070191.002213
 
Smith Stephen B., Yang Aijun, Larsen Tom W., Tume Ron K. (1998): Positional analysis of triacylglycerols from bovine adipose tissue lipids varying in degree of unsaturation. Lipids, 33, 197-207  https://doi.org/10.1007/s11745-998-0196-8
 
Soto E., de la Hoz L., Ordonez J.A., Hierro E., Herranz B., Lopez-Bote C.J., Cambero M.I. (2010): The lipid composition and texture profile of dry-cured loin as affected by feeding level in the period prior to the late fattening phase and by rearing system of Iberian pigs. Italian Journal of Food Science, 22, 377–385.
 
Sumena K.B., Lucy K.M., Chungath J.J., Ashok N., Harshan K.R. (2010): Regional histology of the subcutaneous tissue and the sweat glands of Large White Yorkshire pigs. Tamil Nadu Journal of Veterinary and Animal Sciences, 6, 128–135.
 
Tabilo G, Flores M, Fiszman S.M, Toldra F (1999): Postmortem meat quality and sex affect textural properties and protein breakdown of dry-cured ham. Meat Science, 51, 255-260  https://doi.org/10.1016/S0309-1740(98)00125-9
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti