A meta-analysis of heat stress in dairy cattle: The increase in temperature humidity index affects both milk yield and some physiological parameters

https://doi.org/10.17221/1/2022-CJASCitation:

Kulaz E., Ser G. (2022): A meta-analysis of heat stress in dairy cattle: The increase in temperature humidity index affects both milk yield and some physiological parameters. Czech J. Anim. Sci., 67: 209–217.

download PDF

In this study, the relationships of temperature humidity index (THI) with milk yield and some physiological responses in dairy cattle were investigated. Our goal in the meta-analysis was to find the parameter(s) primarily affected under heat stress. A total of 16 studies with the temperature humidity index value higher than 72, which is an important factor in determining the effect of heat stress, were included in the meta-analysis. The variables of interest in the meta-analysis included: milk yield (kg/day), respiratory rate (breaths/min), rectal temperature (°C). In addition to the meta-analysis, principal component analysis (PCA) was also performed. In the meta-analysis, high variation or heterogeneity (I2 > 99%) was determined between the results of the studies. This may depend on many factors (climate, region, number of samples and management etc.). Heterogeneity is desirable in the meta-analysis, because it provides accurate and reliable interpretations of the variances of parameters. Due to high heterogeneity, the results of the studies were combined according to the mixed model. According to the mixed model and PCA results, a linear relationship was determined between the temperature humidity index and these physiological parameters. According to the meta-analysis, at THI > 72, the mean effect size of milk yield was 50%, and the effect sizes of respiratory rate and rectal temperature were approximately 65% and 38%. All three parameters have a significant effect under heat stress (P < 0.000 1). As a result, there is a linear relationship between temperature humidity index, milk yield and physiological parameters. According to the other characteristics, the respiratory rate was determined as the primary response parameter in parallel with the increase in temperature humidity index.

References:
Ahmed BMS, Younas U, Asar TO, Dikmen S, Hansen PJ, Dahl GE. Cows exposed to heat stress during fetal life exhibit improved thermal tolerance. J Anim Sci. 2017 Aug 1;95(8):3497-503. https://doi.org/10.2527/jas.2016.1298
 
Amamou H, Beckers Y, Mahouchi M, Hammami H. Thermotolerance indicators related to production and physiological responses to heat stress of holstein cows. J Therm Biol. 2019 May 1;82:90-8. https://doi.org/10.1016/j.jtherbio.2019.03.016
 
Armstrong DV. Heat stress interaction with shade and cooling. J Dairy Sci. 1994 Jul 1;77(7):2044-50. https://doi.org/10.3168/jds.S0022-0302(94)77149-6
 
Cochran WG. The combination of estimates from different experiments. Biometrics. 1954 Mar 1;10(1):101-29. https://doi.org/10.2307/3001666
 
Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988. 187 p.
 
Cook NB, Mentink RL, Bennett TB, Burgi K. The effect of heat stress and lameness on time budgets of lactating dairy cows. Int J Dairy Sci. 2007 Apr 1;90(4):1674-82. https://doi.org/10.3168/jds.2006-634
 
Dado-Senn B, Ouellet V, Dahl GE, Laporta J. Methods for assessing heat stress in preweaned dairy calves exposed to chronic heat stress or continuous cooling. J Dairy Sci. 2020 Sep 1;103(9):8587-600. https://doi.org/10.3168/jds.2020-18381
 
de Andrade Ferrazza R, Garcia HDM, Aristizabal VHV, de Souza Nogueira C, Verissimo CJ, Sartori JR, Sartori R, Ferreira JCP. Thermoregulatory responses of Holstein cows exposed to experimentally induced heat stress. J Therm Biol. 2017 May 1;66:68-80. https://doi.org/10.1016/j.jtherbio.2017.03.014
 
do Amaral BC, Connor EE, Tao S, Hayen MJ, Bubolz JW, Dahl GE. Heat stress abatement during the dry period influences metabolic gene expression and improves immune status in the transition period of dairy cows. J Dairy Sci. 2011 Jan;94(1):86-96.
 
Ekine-Dzivenu CC, Mrode R, Oyieng E, Komwihangilo D, Lyatuu E, Msuta G, Ojango JM, Okeyo AM. Evaluating the impact of heat stress as measured by temperature-humidity index (THI) on test-day milk yield of small holder dairy cattle in a sub-Sahara African climate. Livest Sci. 2020 Dec 1;242: 7 p. https://doi.org/10.1016/j.livsci.2020.104314
 
Gantner V, Bobic T, Gantner R, Gregic M, Kuterovac K, Novakovic J, Potocnik K. Differences in response to heat stress due to production level and breed of dairy cows. Int J Biometeorol. 2017 Sep;61(9):1675-85. https://doi.org/10.1007/s00484-017-1348-7
 
Gaughan JB, Holt S, Hahn GL, Mader TL, Eigenberg R. Respiration rate: Is it a good measure of heat stress in cattle? Asian-Australas J Anim Sci. 2000 Jan 1;13(Suppl. C):329-32.
 
Gebremedhin KG, Lee CN, Hillman PE, Collier RJ. Physiological responses of dairy cows during extended solar exposure. Trans ASABE. 2010;53(1):239-47.  https://doi.org/10.13031/2013.29499
 
Godyn D, Herbut P, Angrecka S. Measurements of peripheral and deep body temperature in cattle – A review. J Therm Biol. 2019 Jan 1;79:42-9. https://doi.org/10.1016/j.jtherbio.2018.11.011
 
Hall LW, Villar F, Chapman JD, McLean DJ, Long NM, Xiao Y, Collier JL, Collier RJ. An evaluation of an immunomodulatory feed ingredient in heat-stressed lactating Holstein cows: Effects on hormonal, physiological, and production responses. J Dairy Sci. 2018 Aug 1;101(8):7095-105.
 
Hedges LV, Olkin I. Statistical methods for meta-analysis. San Diego, CA: Academic Press; 1985. 369 p.
 
Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003 Sep 4;327(7414):557-60. https://doi.org/10.1136/bmj.327.7414.557
 
Kaiser HF, Rice J. Little jiffy, mark IV. Educ Psychol Meas. 1974 Apr;34(1):111-7. https://doi.org/10.1177/001316447403400115
 
Kaufman JD, Bailey HR, Kennedy AM, Loffler FE, Rius AG. Cooling and dietary crude protein affected milk production on heat-stressed dairy cows. Livest Sci. 2020 Oct 1; 240: 104111. https://doi.org/10.1016/j.livsci.2020.104111
 
Khan N, Kewalramani N, Mahajan V, Haq Z, Kumar B. Effect of supplementation of niacin on physiological and blood biochemical parameters in crossbred cows during heat stress. Indian J Anim Sci. 2018 Jan 1;88(1):68-75
 
Le S, Josse J, Husson F. FactoMineR: An R package for multivariate analysis. J Stat Softw. 2008 Mar 18;25(1):1-18. https://doi.org/10.18637/jss.v025.i01
 
Liang D, Wood CL, McQuerry KJ, Ray DL, Clark JD, Bewley JM. Influence of breed, milk production, season, and ambient temperature on dairy cow reticulorumen temperature. J Dairy Sci. 2013 Aug 1;96(8):5072-81. https://doi.org/10.3168/jds.2012-6537
 
Lipsey MW, Wilson DB. Practical meta-analysis. Thousand Oaks, USA: Sage Publications; 2001. 264 p.
 
Liu J, Li L, Chen X, Lu Y, Wang D. Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: A novel idea for monitoring and evaluation of heat stress – A review. Asian-Australas J Anim Sci. 2019 Sep;32(9):1332-9. https://doi.org/10.5713/ajas.18.0743
 
Mylostyvyi R, Izhboldina O, Chernenko O, Khramkova O, Kapshuk N, Hoffman G. Microclimate modeling in naturally ventilated dairy barns during the hot season: Checking the accuracy of forecasts. J Therm Biol. 2020 Sep 12;93: 10 p. https://doi.org/10.1016/j.jtherbio.2020.102720
 
Najar T, Rejeb M, Ben M. Modelling of the effects of heat stress on some feeding behaviour and physiological parameters in cows. In: Sauvant D, Van Milgen J, Faverdin P, Friggens N, editors. Modelling nutrient digestion and utilisation in farm animal. Wageningen, Netherlands: Wageningen Academic Publishers; 2011. p. 130-6.
 
NRC – National Research Council. A guide to enviromental research on animals. Wahington, DC: National Academy of Sciences; 1971. 208 p.
 
Osei-Amponsah R, Dunshea FR, Leury BJ, Cheng L, Cullen B, Joy A, Abhijith A, Zhang MH, Chauhan SS. Heat stress impacts on lactating cows grazing Australian summer pastures on an automatic robotic dairy. Animals. 2020 May;10(5): 12 p. https://doi.org/10.3390/ani10050869
 
Pan L, Bu DP, Wang JQ, Cheng JB, Sun XZ, Zhou LY, Qin JJ, Zhang XK, Yuan YM. Effects of Radix Bupleuri extract supplementation on lactation performance and rumen fermentation in heat-stressed lactating Holstein cows. Anim Feed Sci Technol. 2014 Jan 1;187:1-8. https://doi.org/10.1016/j.anifeedsci.2013.09.008
 
Perano KM, Usack JG, Angenent LT, Gebremedhin KG. Production and physiological responses of heat-stressed lactating dairy cattle to conductive cooling. J Dairy Sci. 2015 Aug 1;98(8):5252-61. https://doi.org/10.3168/jds.2014-8784
 
Pinto S, Hoffmann G, Ammon C, Amon T. Critical THI thresholds based on the physiological parameters of lactating dairy cows. J Therm Biol. 2020 Feb 1;88:102523. https://doi.org/10.1016/j.jtherbio.2020.102523
 
Romo-Barron CB, Diaz D, Portillo-Loera JJ, Romo-Rubio JA, Jimenez-Trejo F, Montero-Pardo A. Impact of heat stress on the reproductive performance and physiology of ewes: A systematic review and meta-analyses. Int J Biometeorol. 2019 Jul;63(7):949-62. https://doi.org/10.1007/s00484-019-01707-z
 
Shapasand M, Alizadeh AR, Yousefi M, Amini J. Performance and physiological responses of dairy cattle to water total dissolved solids (TDS) under heat stress. J Appl Anim Res. 2010 Dec 1;38(2):165-8. https://doi.org/10.1080/09712119.2010.10539504
 
West JW. Effects of heat-stress on production in dairy cattle. J Dairy Sci. 2003 Jun 1;86(6):2131-44.  https://doi.org/10.3168/jds.S0022-0302(03)73803-X
 
Wheelock JB, Rhoads RP, Vanbaale MJ, Sanders SR, Baumgard LH. Effects of heat stress on energetic metabolism in lactating Holstein cows. J Dairy Sci. 2010 Feb;93(2):644-55. https://doi.org/10.3168/jds.2009-2295
 
Yan G, Li H, Zhao W, Shi Z. Evaluation of thermal indices based on their relationships with some physiological responses of housed lactating cows under heat stress. Int J Biometeorol. 2020 Dec;64(12):2077-91. https://doi.org/10.1007/s00484-020-01999-6
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti