Effects of sweet potato vine silage supplementation on growth performance, nutrient digestibility, and intestinal health in finishing pigs


Zhang J.J., Yue Z.Y., Sun Y.C., Wang Z.S., Zhang Y.M., Huang L.B., Tu J.M., Shi B.M., Shan A.S., Ma Q.Q. (2022): Effects of sweet potato vine silage supplementation on growth performance, nutrient digestibility, and intestinal health in finishing pigs. Czech J. Anim. Sci. , 67: 218–227.

download PDF

We investigated the effects of sweet potato vine silage (SPVS) supplementation on the growth performance, apparent digestibility and gut health of finishing pigs. 180 Bali Black pigs (Berkshire × Licha Black, with body weight of 74.54 ± 3.32 kg) were assigned to three groups: basal diet (Ctrl), Ctrl supplemented with 2.5% SPVS (Lspvs) and 5.0% SPVS (Hspvs). Animals were slaughtered after nine weeks of feeding. The results indicated that dietary SPVS supplementation improved average daily food intake and average daily gain. However, SPVS treatment decreased the apparent digestibility. Activities of antioxidant enzymes including total superoxide dismutase, total antioxidant capacity, glutathione peroxidase and catalase in the intestines of the Lspvs group were markedly upregulated. Concentrations of IL-1β and IL-6 were decreased and secretory immunoglobulin A was increased in Lspvs group. A significant increase (< 0.05) of ileum diamine oxidase in Lspvs group was observed. The ileum villus height/crypt depth in the Hspvs group was significantly reduced. The ratio of Firmicutes to Bacteroidetes in the caecum contents of pigs was reduced, and the abundance of Lactobacillus was significantly increased. Specifically, Hspvs treatment markedly reduced the abundances of Proteobacteria. Collectively, these results suggest that dietary supplementation with SPVS is capable of improving growth performance, immune function and intestinal health by promoting the balance of the intestinal microbiota.

Al-Sadi R, Boivin M, Ma T. Mechanism of cytokine modulation of epithelial tight junction barrier. Front Biosci. 2009 Jan 1;14:2765-78. https://doi.org/10.2741/3413
Alketife AM, Judd S, Znad H. Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris. Environ Technol. 2017 Jan 2;38(1):94-102. https://doi.org/10.1080/09593330.2016.1186227
Bai Y, Zhao J, Tao S, Zhou XJ, Pi Y, Gerrits WJ, Johnston LJ, Zhang SY, Yang HJ, Liu L, Zhang S. Effect of dietary fiber fermentation on short-chain fatty acid production and microbial composition in vitro. J Sci Food Agric. 2020 Aug 30;100(11):4282-91. https://doi.org/10.1002/jsfa.10470
Bergero D, Prefontaine C, Miraglia N, Peiretti PG. A comparison between the 2N and 4N HCl acid-insoluble ash methods for digestibility trials in horses. Animal. 2009 Dec;3(12):1728-32. https://doi.org/10.1017/S1751731109990656
Carpenter S, O’Neill LAJ. How important are Toll-like receptors for antimicrobial response. Cell Microbiol. 2007 Aug;9(8):1891-901. https://doi.org/10.1111/j.1462-5822.2007.00965.x
Dang HL, Lv R, Obitsu T, Sugino T. Effect of replacing alfalfa hay with a mixture of cassava foliage silage and sweet potato vine silage on ruminal and intestinal digestion in sheep. Anim Sci J. 2017 Feb;89(2):386-96. https://doi.org/10.1111/asj.12925
Doleyres Y, Beck P, Vollenweider S, Lacroix C. Production of 3-hydroxypropionaldehyde using a two-step process with Lactobacillus reuteri. Appl Microb Biot. 2005 Sep;68(4):467-74. https://doi.org/10.1007/s00253-005-1895-4
Evans NJ, Brown JM, Murray RD, Getty B, Birtles RJ, Hart CA, Carter SD. Characterization of novel bovine gastrointestinal tract Treponema isolates and comparison with bovine digital dermatitis treponemes. Appl Environ Microb. 2011 Jan 1;77(1):138-47. https://doi.org/10.1128/AEM.00993-10
Gakige JK, Gachuri C, Butterbach-Bahl K, Goopy JP. Sweet potato (Ipomoea batatas) vine silage: A cost-effective supplement for milk production in smallholder dairy-farming systems of East Africa? Anim Prod Sci. 2020 Mar 2;60(8):1087-94. https://doi.org/10.1071/AN18743
Godfrey KM, Barker DJ. Fetal nutrition and adult disease. Am J Clin Nutr. 2000 May 1;71(5):1344S-52S. https://doi.org/10.1093/ajcn/71.5.1344s
Holota Y, Dovbynchuk T, Kaji I, Vareniuk I, Dzyubenko N, Chervinska T, Zakordonets L, Stetska V, Ostapchenko L, Serhiychuk T, Tolstanova G. The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity. PLoS One. 2019 Aug 22;14(8): 25 p. https://doi.org/10.1371/journal.pone.0220642
Jin W, Ye H, Zhao JZ, Zhou ZJ, Huan F. Consuming fermented distillers’ dried grains with solubles (DDGS) feed reveals a shift in the faecal microbiota of growing and fattening pigs using 454 pyrosequencing. J Integr Agr. 2017;16(4):900-10. https://doi.org/10.1016/S2095-3119(16)61523-X
Jonathan MC, van den Borne JJ, van Wiechen P, Silva CS, Schols HA, Gruppen H. In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans. Food Chem. 2012 Aug 1;133(3):889-97. https://doi.org/10.1016/j.foodchem.2012.01.110
Jorgensen H, Serena A, Hedemann MS, Knudsen KEB. The fermentative capacity of growing pigs and adult sows fed diets with contrasting type and level of dietary fibre. Livest Sci. 2007 May 15;109(1-3):111-4. https://doi.org/10.1016/j.livsci.2007.01.102
Kazmierczak SC, Robertson AF. Evaluation of a spectrophotometric method for measurement of activity of diamine oxidase in newborn infants. Ann Clin Lab Sci. 1992 May 1;22(3):155-61.
Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Colgan SP. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015 May 13;17(5):662-71. https://doi.org/10.1016/j.chom.2015.03.005
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444(7122):1022-3. https://doi.org/10.1038/4441022a
Li P, Ji S, Wang Q, Qin M, Hou C, Shen Y. Adding sweet potato vines improve the quality of rice straw silage. Anim Sci J. 2017 Apr;88(4):625-32. https://doi.org/10.1111/asj.12690
Liu P, Zhao J, Guo P, Lu W, Geng Z, Levesque CL, Ma X. Dietary corn bran fermented by Bacillus subtilis MA139 decreased gut cellulolytic bacteria and microbiota diversity in finishing pigs. Front Cell Infect Microbiol. 2017 Dec 22;7: 9 p. https://doi.org/10.3389/fcimb.2017.00526
Ma QQ, Zhou XB, Hu LL, Chen JY, Zhu JL, Shan AS. Leucine and isoleucine have similar effects on reducing lipid accumulation, improving insulin sensitivity and increasing the browning of WAT in high-fat diet-induced obese mice. Food Funct. 2020 Feb 6;11(3):2279-90. https://doi.org/10.1039/C9FO03084K
Mason F, Pascotto E, Zanfi C, Spanghero M. Effect of dietary inclusion of whole ear corn silage on stomach development and gastric mucosa integrity of heavy pigs at slaughter. Vet J. 2013 Dec 1;198(3):717-9. https://doi.org/10.1016/j.tvjl.2013.09.054
NRC – National Research Council. Nutrient requirements of swine. 12th rev. ed. Washington, DC, USA: National Academies Press; 2012. 420 p.
Ocepek M, Goold CM, Busancic M, Aarnink AJ. Maize silage as enrichment material improves the welfare of growing-finishing pigs in environmentally-friendly pens. Appl Anim Behav Sci. 2020 Sep 1;230: 7 p. https://doi.org/10.1016/j.applanim.2020.105043
Pereira RC, Dornas M, Ribeiro K, de Souza IA, Agarussi MC, da Silva VP, de Andrade VC Jr, Pereira OG. Nutritive value, fermentation profile, and effluent loss in sweet potato vine silage, with or without microbial inoculant. Grassl Sci. 2021 Jan;67(1):41-7. https://doi.org/10.1111/grs.12284
Qu L, Ren J, Huang L, Pang B, Liu X, Liu X, Li B, Shan Y. Antidiabetic effects of Lactobacillus casei fermented yogurt through reshaping gut microbiota structure in type 2 diabetic rats. J Agric Food Chem. 2018 Nov 6;66(48):12696-705. https://doi.org/10.1021/acs.jafc.8b04874
Salyers AA, West SE, Vercellotti JR, Wilkins TD. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microb. 1977 Nov;34(5):529-33. https://doi.org/10.1128/aem.34.5.529-533.1977
Tejeda OJ, Kim WK. The effects of cellulose and soybean hulls as sources of dietary fiber on the growth performance, organ growth, gut histomorphology, and nutrient digestibility of broiler chickens. Poult Sci. 2020 Dec 1;99(12):6828-36. https://doi.org/10.1016/j.psj.2020.08.081
Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radical Bio Med. 2007 Jul 1;43(1):4-15.  https://doi.org/10.1016/j.freeradbiomed.2007.03.024
Wallenbeck A, Rundgren M, Presto M. Inclusion of grass/clover silage in diets to growing/finishing pigs – Influence on performance and carcass quality. Acta Agric Scand A Anim Sci. 2014 Jul 3;64(3):145-53. https://doi.org/10.1080/09064702.2015.1006668
Wang B, Li JJ, Li QR, Li YS, Li N, Li JS. Effect of lactobacillus in the intestinal barrier function on enteropathogenic Escherichia coli infected mice. J Parenter Enter Nutr. 2007;14(6):321-5.
Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Nat Acad Sci. 2004 Jan 27;101(4):1045-50. https://doi.org/10.1073/pnas.2637002100
Xu S, Zhang P, Cao M, Dong Y, Li J, Lin Y, Wu D. Microbial mechanistic insights into the role of sweet potato vine on improving health in Chinese Meishan gilt model. Animals. 2019 Sep;9(9): 15 p. https://doi.org/10.3390/ani9090632
Yin X, Tian J, Zhang J. Effects of re-ensiling on the fermentation quality and microbial community of Napier grass (Pennisetum purpureum) silage. J Sci Food Agric. 2021 Sep;101(12):5028-37. https://doi.org/10.1002/jsfa.11147
Zanfi C, Spanghero M. Digestibility of diets containing whole ear corn silage for heavy pigs. Livest Sci. 2012 May 1;145(1-3):287-91. https://doi.org/10.1016/j.livsci.2012.01.009
Zhang P, Cao M, Li J, Lin Y, Fang Z, Che L, Xu S. Effect of sweet potato vine on the onset of puberty and follicle development in Chinese Meishan gilts. Animals. 2019 Jun;9(6): 11 p. https://doi.org/10.3390/ani9060297
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti