Response to selection of a breeding program for Suffolk sheep in the Czech Republic

 

https://doi.org/10.17221/21/2018-CJASCitation:Ptáček M., Ducháček J., Schmidová J., Stádník L. (2018): Response to selection of a breeding program for Suffolk sheep in the Czech Republic  . Czech J. Anim. Sci., 63: 305-312.
download PDF

Lamb growth performance traits in relation to parental breeding values (BVs) for these traits were evaluated in a purebred Suffolk sheep population in the Czech Republic. The research lasted over 8 years and included 24 886 lambs. Four relevant parental BVs were observed: BV predicted for lamb live weight direct effect (BVLW-DE), BV predicted for lamb live weight maternal effect (BVLW-ME), BV predicted for lamb musculus longissimus lumborum et thoracis depth (BV-MLLT), and BV predicted for lamb backfat thickness (BV-BT). The lamb live weight (LW; kg), musculus longissimus lumborum et thoracis depth (MLLT; mm), and backfat thickness (BT; mm) were assessed at 100 days of age. A dataset was created using the most current parental BVs for each year (2007–2014) and subsequent growth traits of their lambs in the next season (2008–2015). Linear regressions showed an increased tendency when one point in dam BVs was associated with an increase in lamb LW (0.393 kg; P < 0.01 in BVLW-DE and 0.090 kg; P < 0.05 in BVLW-ME), MLLT (0.340 mm; P < 0.01 in BV-MLLT), or BT (0.243; P < 0.01 mm in BV-BT). Lower (but significant – P < 0.01) values on linear regression were detected for sire BVs, when 0.135 kg of LW, 0.217 mm of MLLT, and 0.214 mm of BT corresponded to 1-point increases of BVLW-DE, BV-MLLT, or BV-BT. This was confirmed by ANOVA evaluation, especially for LW and MLLT traits. Maximal differences (P < 0.05) in lamb LW were 1.84 kg or 0.88 kg regarding to dam or sire BVLW-DE groups. Similarly, the difference (P < 0.05) in lamb MLLT reached 0.82 mm in dam BV-MLLT, while 0.57 mm was detected in sire BV-MLLT groups. These results have practical implications for the objectives of selection schemes used in the Suffolk sheep population in the Czech Republic.

References:
Cawthorn Donna-Mareè, Hoffman Louwrens C. (2014): The role of traditional and non-traditional meat animals in feeding a growing and evolving world. Animal Frontiers, 4, 6-12  https://doi.org/10.2527/af.2014-0027
 
Gholizadeh Mohsen, Ghafouri-Kesbi Farhad (2015): Estimation of genetic parameters for growth-related traits and evaluating the results of a 27-year selection program in Baluchi sheep. Small Ruminant Research, 130, 8-14  https://doi.org/10.1016/j.smallrumres.2015.07.032
 
Gizaw Solomon, Lemma Sisay, Komen Hans, Van Arendonk Johan A.M. (2007): Estimates of genetic parameters and genetic trends for live weight and fleece traits in Menz sheep. Small Ruminant Research, 70, 145-153  https://doi.org/10.1016/j.smallrumres.2006.02.007
 
Hanford K. J., Van Vleck L. D., Snowder G. D. (2002): Estimates of genetic parameters and genetic change for reproduction, weight, and wool characteristics of Columbia sheep1. Journal of Animal Science, 80, 3086-3098  https://doi.org/10.2527/2002.80123086x
 
Hanford K. J., Van Vleck L. D., Snowder G. D. (2003): Estimates of genetic parameters and genetic change for reproduction, weight, and wool characteristics of Targhee sheep1. Journal of Animal Science, 81, 630-640  https://doi.org/10.2527/2003.813630x
 
Hasiec M., Szlis M., Chmielewska N., Górski K., Romanowicz K., Misztal T. (2017): Effect of salsolinol on ACTH and cortisol response to handling stress in early anestrous sheep. Czech Journal of Animal Science, 62, 130-139  https://doi.org/10.17221/41/2016-CJAS
 
Lewis R.M, Simm G (2000): Selection strategies in sire referencing schemes in sheep. Livestock Production Science, 67, 129-141  https://doi.org/10.1016/S0301-6226(00)00182-2
 
Maxa J., Norberg E., Berg P., Milerski M. (2007): Genetic parameters for body weight, longissimus muscle depth and fat depth for Suffolk sheep in the Czech Republic. Small Ruminant Research, 72, 87-91  https://doi.org/10.1016/j.smallrumres.2006.04.018
 
Maximini Lina, Brown Daniel John, Baumung Roswitha, Fuerst-Waltl Birgit (2012): Genetic parameters of ultrasound and computer tomography scan traits in Austrian meat sheep. Livestock Science, 146, 168-174  https://doi.org/10.1016/j.livsci.2012.03.007
 
Milerski M., Margetin M., Maxa J. (2006): Factors affecting the longissimus dorsi muscle depth and backfat thickness measured by ultrasound technique in lambs. Archives Animal Breeding, 49, 282–288.
 
Mokhtari M.S., Rashidi A. (2010): Genetic trends estimation for body weights of Kermani sheep at different ages using multivariate animal models. Small Ruminant Research, 88, 23-26  https://doi.org/10.1016/j.smallrumres.2009.11.003
 
Molik E., Błasiak M., Misztal T., Romanowicz K., Zięba D.A. (2017): Profile of gonadotropic hormone secretion in sheep with disturbed rhythm of seasonality. Czech Journal of Animal Science, 62, 242-248  https://doi.org/10.17221/22/2016-CJAS
 
Mortimer S.I., van der Werf J.H.J., Jacob R.H., Hopkins D.L., Pannier L., Pearce K.L., Gardner G.E., Warner R.D., Geesink G.H., Hocking Edwards J.E., Ponnampalam E.N., Ball A.J., Gilmour A.R., Pethick D.W. (2014): Genetic parameters for meat quality traits of Australian lamb meat. Meat Science, 96, 1016-1024  https://doi.org/10.1016/j.meatsci.2013.09.007
 
Paulenz H., SOderquist L., Adnoy T., Nordstoga A. B., Andersen Berg K. (2005): Effect of vaginal and cervical deposition of semen on the fertility of sheep inseminated with frozen-thawed semen. Veterinary Record, 156, 372-375  https://doi.org/10.1136/vr.156.12.372
 
Paulenz Heiko, Ådnøy Tormod, Söderquist Lennart (): Comparison of fertility results after vaginal insemination using different thawing procedures and packages for frozen ram semen. Acta Veterinaria Scandinavica, 49, 26-  https://doi.org/10.1186/1751-0147-49-26
 
Ptacek M., Duchacek J., Stadnik L., Hakl J., Fantova M. (2017a): Analysis of multivariate relations among birth weight, survivability traits, growth performance, and some important factors in Suffolk lambs. Archives Animal Breeding, 60, 43–50.
 
Ptacek M., Duchacek J., Stadnik L., Fantova M. (2017b): Effects of age and nutritional status at mating on the reproductive and productive traits in Suffolk sheep kept under permanent outdoor management system. Czech Journal of Animal Science, 62, 211–218.
 
Rasali D.P., Shrestha J.N.B., Crow G.H. (2006): Development of composite sheep breeds in the world: a review. Canadian Journal of Animal Science, 86, 1–24.
 
Santos B.F.S., McHugh N., Byrne T.J., Berry D.P., Amer P.R. (2015): Comparison of breeding objectives across countries with application to sheep indexes in New Zealand and Ireland. Journal of Animal Breeding and Genetics, 132, 144-154  https://doi.org/10.1111/jbg.12146
 
Schmidová Jitka, Milerski Michal, Svitaková Alena, Vostrý Luboš, Novotná Alexandra (2014): Estimation of genetic parameters for litter size in Charollais, Romney, Merinolandschaf, Romanov, Suffolk, Šumava and Texel breeds of sheep. Small Ruminant Research, 119, 33-38  https://doi.org/10.1016/j.smallrumres.2014.02.004
 
Shaat I, Galal S, Mansour H (2004): Genetic trends for lamb weights in flocks of Egyptian Rahmani and Ossimi sheep. Small Ruminant Research, 51, 23-28  https://doi.org/10.1016/S0921-4488(03)00185-8
 
Shrestha J. N. B., Peters H. F., Heaney D. P., Vleck L. D. Van (1996): Genetic trends over 20 years of selection in the three synthetic Arcotts, Suffolk and Finnish Landrace sheep breeds. 1. Early growth traits. Canadian Journal of Animal Science, 76, 23-34  https://doi.org/10.4141/cjas96-004
 
Simm G., Lewis R. M., Collins J. E., Nieuwhof G. J. (2001): Use of sire referencing schemes to select for improved carcass composition in sheep. Journal of Animal Science, 79, E255-  https://doi.org/10.2527/jas2001.79E-SupplE255x
 
Simm G., Lewis R.M., Grundy B., Dingwall W.S. (2002): Responses to selection for lean growth in sheep. Animal Science, 74, 39–50.
 
Splan R. K., Cundiff L. V., Dikeman M. E., Van Vleck L. D. (2002): Estimates of parameters between direct and maternal genetic effects for weaning weight and direct genetic effects for carcass traits in crossbred cattle1. Journal of Animal Science, 80, 3107-3111  https://doi.org/10.2527/2002.80123107x
 
Svitáková Alena, Schmidová Jitka, Pešek Petr, Novotná Alexandra (2014): Recent developments in cattle, pig, sheep and horse breeding - a review. Acta Veterinaria Brno, 83, 327-340  https://doi.org/10.2754/avb201483040327
 
Vostry L., Milerski M. (2013): Genetic and non-genetic effects influencing lamb survivability in the Czech Republic. Small Ruminant Research, 119, 33–38.
 
Vostrý L., Přibyl J., Schlote W., Veselá Z., Jakubec V., Majzlík I., Mach K. (2009): Estimation of animal × environment interaction in Czech beef cattle. Archives Animal Breeding, 52, 15-22  https://doi.org/10.5194/aab-52-15-2009
 
Wolfová M., Wolf J., Milerski M. (2009): Calculating economic values for growth and functional traits in non-dairy sheep. Journal of Animal Breeding and Genetics, 126, 480-491  https://doi.org/10.1111/j.1439-0388.2009.00815.x
 
Wolfová M., Wolf J., Milerski M. (2011): Economic weights of production and functional traits for Merinolandschaf, Romney, Romanov and Sumavska sheep in the Czech Republic. Small Ruminant Research, 99, 25-33  https://doi.org/10.1016/j.smallrumres.2011.03.054
 
download PDF

© 2019 Czech Academy of Agricultural Sciences