Effects of fermented Caragana korshinskii on the intramuscular fat content and expression of FABP3, UBE3C, ADRB3, LIPE, and SCD in different muscles of Tan sheep

https://doi.org/10.17221/231/2019-CJASCitation:Xu X., Liu T., Fan S., Ma W., Chen W., Zhang X. (2020): Effects of fermented Caragana korshinskii on the intramuscular fat content and expression of FABP3, UBE3C, ADRB3, LIPE, and SCD in different muscles of Tan sheep. Czech J. Anim. Sci., 65: 145-152.
download PDF

The aim of this study was to investigate the effects of fermented Caragana korshinskii on the intramuscular fat content and varied expression of the intramuscular fat deposition-related genes FABP3, UBE3C, ADRB3, LIPE, and SCD among four muscle tissues (m. psoas, gluteus, quadriceps, and supraspinatus) of Tan sheep. Twenty-eight male animals of similar age (270 ± 10 days) and weight (24.6 ± 1.06 kg) were randomly divided into a control group (fed the basal diet) and an experimental group (fed the same diet except 10% of corn stalks were replaced with fermented C. korshinskii). Soxhlet petroleum-ether extraction and quantitative real-time PCR were applied to evaluate the fat content and gene expression in tissues, respectively. We observed a significant improvement (P < 0.05) in the intramuscular fat contents in the m. gluteus and supraspinatus of treated sheep compared to those of non treated sheep. The FABP3 mRNA level was markedly higher (P < 0.05) in the m. quadriceps and supraspinatus of treated sheep than in the control sheep. UBE3C mRNA levels were significantly decreased in the m. gluteus, quadriceps, and supraspinatus (P < 0.05) of treated sheep compared with those of the control sheep. ADRB3 mRNA levels were significantly lower (P < 0.05) in the m. psoas, gluteus, and supraspinatus of sheep fed fermented C. korshinskii than in the control group, whereas LIPE mRNA levels were significantly increased (P < 0.05) in the m. gluteus and quadriceps of sheep fed fermented C. korshinskii. The SCD mRNA levels in m. psoas, quadriceps, and supraspinatus of sheep fed fermented C. korshinskii were significantly higher than those of the control group (P < 0.05). Our results indicated that fermented C. korshinskii could partially replace the roughage used in Tan sheep feed, and its substitution affected the intramuscular fat content and altered the expression of intramuscular fat deposition-related genes. The present study lays a solid foundation for further exploring the utilization of C. korshinskii in ruminant husbandry.

References:
Agricultural industry standard of the People’s republic of China. Meat sheep feeding standard (NY/T816-2004). Hunan Feed. 2006;6:9-15.
 
Bezaire V, Spriet LL, Campbell S, Sabet N, Gerrits M, Bonen A, Harper ME. Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation. FASEB J. 2005 Jun;19(8):977-9. https://doi.org/10.1096/fj.04-2765fje
 
Cao WY, Liu Z, Guo F, Yu J, Li H, Yin X. Adipocyte ADRB3 down-regulated in chinese overweight individuals adipocyte ADRB3 in overweight. Obes Facts. 2018;11(6):524-33. https://doi.org/10.1159/000495116
 
Chmurzynska A. The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism. J Appl Genet. 2006 Mar 1;47(1):39-48. https://doi.org/10.1007/BF03194597
 
de Jonge HJ, Fehrmann RS, de Bont ES, Hofstra RM, Gerbens F, Kamps WA, de Vries EG, van der Zee AG, te Meerman GJ, ter Elst A. Evidence based selection of house-keeping genes. PloS One. 2007;2(9):e898. https://doi.org/10.1371/journal.pone.0000898
 
Fang XW, Li FM, Zhang HN, Jiang ZR. The comparation of drought resistance between Caragana species (C. arborescens, C. korshinskii, C. microphylla) and two chickpea (Cicer arietinum L.) cultivars. Acta Ecol Sin. 2011;31:2437-43.
 
Goszczynski DE, Mazzucco JP, Ripoli MV, Villarreal EL, Rogberg-Munoz A, Mezzadra CA, Melucci LM, Giovambattista G. Characterization of the bovine gene LIPE and possible influence on fatty acid composition of meat. Meta Gene. 2014 Oct 16;2:746-60. https://doi.org/10.1016/j.mgene.2014.09.001
 
Hamill RM, McBryan J, McGee C, Mullen AM, Sweeney T, Talbot A, Cairns MT, Davey GC. Functional analysis of muscle gene expression profiles associated with tenderness and intramuscular fat content in pork. Meat Sci. 2012 Dec 1;92(4):440-50.  https://doi.org/10.1016/j.meatsci.2012.05.007
 
Himms-Hagen J, Harper ME. Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: A hypothesis. Exp Biol Med (Maywood). 2001 Feb;226(2):78-84. https://doi.org/10.1177/153537020122600204
 
Hu HM, Wang JY, Guo JF, Zhang Y, Shen YF, Wu Y. Correlation of H-FABP gene expression with IMF and fatty acid content in laiwu pigs and duroc. Acta Agric Boreali Sin. 2010;25:64-8.
 
Kulig H, Kowalewska-Luczak I, Kmiec M, Wojdak-Maksymiec K. ANXA9, SLC27A3, FABP3 and FABP4 single nucleotide polymorphisms in relation to milk production traits in Jersey cows. Czech J. Anim. Sci. 2010 Nov;55(11):463-7. https://doi.org/10.17221/1714-CJAS
 
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001 Dec 1;25(4):402-8. https://doi.org/10.1006/meth.2001.1262
 
Miyoshi H, Perfield JW, Obin MS, Greenberg AS. Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J Cell Biochem. 2008 Dec 15;105(6):1430-6. https://doi.org/10.1002/jcb.21964
 
Mostyn A, Litten JC, Perkins KS, Euden PJ, Corson AM, Symonds ME, Clarke L. Influence of size at birth on the endocrine profiles and expression of uncoupling proteins in subcutaneous adipose tissue, lung, and muscle of neonatal pigs. Am J Physiol Regul Integr Comp Physiol. 2005 Jun;288(6):R1536-42. https://doi.org/10.1152/ajpregu.00423.2004
 
NRC – National Research Council. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. Washington DC: The National Academies Press; 2007. 347 p.
 
Qi L, Heredia JE, Altarejos JY, Screaton R, Goebel N, Niessen S, Macleod LX, Liew CW, Kulkarni RN, Bain J, Newgard C, Nelson M, Evans RM, Yates J, Montminy M. TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism. Science. 2006 Jun 23;312(5781):1763-6. https://doi.org/10.1126/science.1123374
 
Supakankul P, Mekchay S. Effect of UBE3C polymorphisms on intramuscular fat content and fatty acid composition in duroc pigs. Genet Mol Res. 2016 Aug 29;15(3):1-10. https://doi.org/10.4238/gmr.15038415
 
Technical regulations for high-frequency breeding and feeding of stall-feeding sheep (DB64/T 1480-2017). Ningxia J Agr Forestry Sci Technol. 2017;58:21.
 
Wang D, Zhao C, Liu S, Zhang T, Yao J, Cao Y. Effects of Piromyces sp. CN6 CGMCC 14449 on fermentation quality, nutrient composition and the in vitro degradation rate of whole crop maize silage. AMB Express. 2019 Jul 29;9(1):121. https://doi.org/10.1186/s13568-019-0846-x
 
Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques. 2005 Jul;39(1):75-85. https://doi.org/10.2144/05391RV01
 
Xuan T, Jian Z, Xue-Liang W. Advances in bovine stearoyl-coenzyme a desaturase (SCD) gene. China Herbivores. 2009;4:57-9.
 
Xue W, Wang W, Jin B, Zhang X, Xu X. Association of the ADRB3, FABP3, LIPE, and LPL gene polymorphisms with pig intramuscular fat content and fatty acid composition. Czech J Anim Sci. 2015 Feb;60(2):60-6.  https://doi.org/10.17221/7975-CJAS
 
Yang XM, Niu XW, Li J, Wang ZW, Jin G. Nutrient evaluation of Caragana korshinskii on cattle. J Yellow Cattle Sci. 2005;4:33-5.
 
Zhong C, Sun Z, Zhou Z, Jin MJ, Tan ZL, Jia SR. Chemical characterization and nutritional analysis of protein isolates from Caragana korshinskii kom. J Agr Food Chem. 2014 Apr 9;62(14):3217-22. https://doi.org/10.1021/jf500349s
 
download PDF

© 2020 Czech Academy of Agricultural Sciences