Equilibration and freezing interactions affecting bull sperm characteristics after thawing

https://doi.org/10.17221/23/2016-CJASCitation:Doležalová M., Stádník L., Biniová Z., Ducháček J., Stupka R. (2016): Equilibration and freezing interactions affecting bull sperm characteristics after thawing. Czech J. Anim. Sci., 61: 515-525.
download PDF
The objective was to determine effects of equilibration length and freezing curve type as well as their interactions on motility and live spermatozoa proportion in bull sperm after thawing. The ejaculates of 6 sires were repeatedly collected. Fresh semen was diluted with one extender and divided into 3 groups equilibrated for 30, 120, and 240 min. Subsequently, half straws of each group were frozen using standard 3-phase or 2-phase freezing curve differing in the rate of temperature decrease. The spermatozoa motility (M) was evaluated immediately after thawing and at 30, 60, 90, and 120 min of thermodynamic test (TDT). Live spermatozoa proportion was evaluated after thawing and at the end of TDT. Average of spermatozoa motility (AM), decrease of spermatozoa motility (MD), average proportion of live spermatozoa (ALS), and decrease of live spermatozoa proportion (DLS) through the TDT were calculated. Significant inter-sire differences in AM (0.45–17.0%; P < 0.05–0.01), MD (0.76–12.57%; P < 0.05–0.01), and ALS (0.99–23.8%; P < 0.01) were detected. The longest equilibration ensured the highest M during TDT and AM (+2.72 and +4.58%; P < 0.05–0.01), however higher MD (+4.06%; P < 0.01) compared to standard length as well. Straws freezed using 2-phase curve achieved higher M through TDT, AM (+7.3%; P < 0.01) as well as ALS (+11.77%; P < 0.01). The 2-phase curve presented higher M compared to the 3-phase freezing curve within all equilibration lengths. Significant differences in AM, MD, and ALS (0.45–6.78%, 0.62–5.35%, and 20.79–21.11%; P < 0.05–0.01) between equilibration length vs freezing curve interactions were determined. Results document the importance of equilibration length, freezing curve, and their interaction effect on live spermatozoa proportion and sperm motility after thawing as well as necessity of individual conditions for bulls semen processing and insemination doses production.
Andrabi S.M.H. (2007): Fundamental principles of cryopreservation of Bos taurus and Bos indicus bull spermatozoa. International Journal of Agriculture and Biology, 9, 367–369.
Ball P.J.H., Peters A.R. (2004): Reproduction in Cattle. Blackwell Publishing, Oxford, UK.
Beran Jan, Stádník Luděk, Ducháček Jaromír, Toušová Renáta, Louda František, Štolc Ladislav (): Effect of bulls' breed, age and body condition score on quantitative and qualitative traits of their semen. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 59, 37-44  https://doi.org/10.11118/actaun201159060037
Beran J., Stadnik L., Bezdicek J., Louda F., Citek J., Duchacek J. (2012): Effect of sire and extender on sperm motility and share of live or dead sperm in bulls’ fresh ejaculate and in AI doses after thawing. Archiv Tierzucht, 55, 207–218.
Beran J., Stadnik L., Duchacek J., Okrouhla M., Dolezalova M., Kadlecova V., Ptacek M. (2013a): Relationships among the cervical mucus urea and acetone, accuracy of insemination timing, and sperm survival in Holstein cows. Animal Reproduction Science, 142, 28–34.
Beran J., Simonik O., Stadnik L., Rajmon R., Duchacek J., Krejcarkova A., Dolezalova M., Sichtar J. (2013b): Effect of bull, diluter and LDL-cholesterol concentration on spermatozoa resistance against cold shock. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61, 1575–1581.
Câmara D.R., Silva S.V., Almeida F.C., Nunes J.F., Guerra M.M.P. (2011): Effects of antioxidants and duration of pre-freezing equilibration on frozen-thawed ram semen. Theriogenology, 76, 342-350  https://doi.org/10.1016/j.theriogenology.2011.02.013
Chen Y., Foote R.H., Brockett C.C. (1993): Effect of Sucrose, Trehalose, Hypotaurine, Taurine, and Blood Serum on Survival of Frozen Bull Sperm. Cryobiology, 30, 423-431  https://doi.org/10.1006/cryo.1993.1042
Clulow J.R., Mansfield L.J., Morris L.H.A., Evans G., Maxwell W.M.C. (2008): A comparison between freezing methods for the cryopreservation of stallion spermatozoa. Animal Reproduction Science, 108, 298-308  https://doi.org/10.1016/j.anireprosci.2007.08.014
Defoin L, Granados A, Donnay I (2008): Analysing Motility Parameters on Fresh Bull Semen Could Help to Predict Resistance to Freezing: A Preliminary Study. Reproduction in Domestic Animals, 43, 606-611  https://doi.org/10.1111/j.1439-0531.2007.00964.x
Dhami A.J., Sahni K.L., Mohan G. (1992): Effect of various cooling rates (from 30°C to 5°C) and thawing temperatures on the deep-freezing of and semen. Theriogenology, 38, 565-574  https://doi.org/10.1016/0093-691X(92)90076-4
Doležalová Martina, Stádník Luděk, Biniová Zuzana, Ducháček Jaromír, Beran Jan (2015): The effect of the freezing curve type on bull spermatozoa motility after thawing. Acta Veterinaria Brno, 84, 383-391  https://doi.org/10.2754/avb201584040383
Dzyuba V., Cosson J., Dzyuba B., Rodina M. (): Oxidative stress and motility in tench Tinca tinca spermatozoa. Czech Journal of Animal Science, 60, 250-262  https://doi.org/10.17221/8238-CJAS
Foote R.H., Kaproth M.T. (2002): Large Batch Freezing of Bull Semen: Effect of Time of Freezing and Fructose on Fertility. Journal of Dairy Science, 85, 453-456  https://doi.org/10.3168/jds.S0022-0302(02)74094-0
Forero-Gonzalez R. A., Celeghini E. C. C., Raphael C. F., Andrade A. F. C., Bressan F. F., Arruda R. P. (2012): Effects of bovine sperm cryopreservation using different freezing techniques and cryoprotective agents on plasma, acrosomal and mitochondrial membranes. Andrologia, 44, 154-159  https://doi.org/10.1111/j.1439-0272.2010.01154.x
Frydrychova S., Cerovsky J., Lustykova A., Rozkot M. (2010): Effects of long-term liquid commercial semen extender and storage time on the membrane quality of boar semen. Czech Journal of Animal Science, 55, 160–166.
Gao D., Mazur P., Critser J.K. (1997): Fundamental cryobiology of mammalian spermatozoa. In: Karow A.M., Critser J.K. (eds): Reproductive Tissue Banking: Scientific Principles. Academic Press, San Diego, USA, 263–328.
Gil J, Januskauskas A, Haard MCh, Haard Mgm, Johanisson A, Soderquist L, Rodriguez-Martinez H (2000): Functional Sperm Parameters and Fertility of Bull Semen Extended in Biociphos-PlusR and TriladylR. Reproduction in Domestic Animals, 35, 69-77  https://doi.org/10.1046/j.1439-0531.2000.00197.x
Herold F.C., de Haas K., Colenbrander B., Gerber D. (2006): Comparison of equilibration times when freezing epididymal sperm from African buffalo (Syncerus caffer) using Triladyl™ or AndroMed®. Theriogenology, 66, 1123-1130  https://doi.org/10.1016/j.theriogenology.2006.03.007
Januskauskas A., Gil J., Söderquist L., Hrd M.G.M., Hrd M.Ch., Johannisson A., Rodriguez-Martinez H. (1999): Effect of cooling rates on post-thaw sperm motility, membrane integrity, capacitation status and fertility of dairy bull semen used for artificial insemination in sweden. Theriogenology, 52, 641-658  https://doi.org/10.1016/S0093-691X(99)00159-4
Kristan J., Hatef A., Alavi S.M.H., Policar T. (2014): Sperm morphology, ultrastructure, and motility in pikeperch Sander lucioperca (Percidae, Teleostei) associated with various activation media. Czech Journal of Animal Science, 59, 1–10.
Leite Ticiano Guimarães, do Vale Filho Vicente Ribeiro, de Arruda Rubens Paes, de Andrade André Furugen Cesar, Emerick Lucas Luz, Zaffalon Fabiane Gilli, Martins Jorge André Matias, Andrade Venício José de (2010): Effects of extender and equilibration time on post-thaw motility and membrane integrity of cryopreserved Gyr bull semen evaluated by CASA and flow cytometry. Animal Reproduction Science, 120, 31-38  https://doi.org/10.1016/j.anireprosci.2010.04.005
Lemma A. (2011): Effect of cryopreservation on sperm quality and fertility. In: Manafi M. (ed.): Artificial Insemination in Farm Animals. InTech, Rijeka, Croatia, 191–216.
Linhartova Z., Rodina M., Guralp H., Gazo I., Saito T., Psenicka M. (2014): Isolation and cryopreservation of early stages of germ cells of tench (Tinca tinca). Czech Journal of Animal Science, 59, 381–390.
Meamar M., Shahneh A.Z., Zamiri M.J., Zeinoaldini S., Kohram H., Hashemi M.R., Asghari S. (): Preservation effects of melatonin on the quality and fertility of native Fars rooster semen during liquid storage. Czech Journal of Animal Science, 61, 42-48  https://doi.org/10.17221/8667-CJAS
Mohan R, Atreja SK (2014): ‘Soya Milk Tris-based Phytoextender Reduces Apoptosis in Cryopreserved Buffalo ( Bubalus bubalis ) Spermatozoa’. Reproduction in Domestic Animals, 49, 797-805  https://doi.org/10.1111/rda.12371
Muchlisin Z.A., Nadiah W.N., Nadiya N., Fadli N., Hendri A., Khalil M., Siti-Azizah M.N. (): Exploration of natural cryoprotectants for cryopreservation of African catfish, Clarias gariepinus, Burchell 1822 (Pisces: Clariidae) spermatozoa. Czech Journal of Animal Science, 60, 10-15  https://doi.org/10.17221/7906-CJAS
Muiño R, Fernández M, Peña AI (2007): Post-thaw Survival and Longevity of Bull Spermatozoa Frozen with an Egg Yolk-based or Two Egg Yolk-free Extenders after an Equilibration Period of 18�h. Reproduction in Domestic Animals, 42, 305-311  https://doi.org/10.1111/j.1439-0531.2006.00784.x
Rubio-Guillén J, González D, Garde JJ, Esteso MC, Fernández-Santos MR, Rodríguez-Gíl JE, Madrid-Bury N, Quintero-Moreno A (2007): Effects of Cryopreservation on Bull Spermatozoa Distribution in Morphometrically Distinct Subpopulations. Reproduction in Domestic Animals, 42, 354-357  https://doi.org/10.1111/j.1439-0531.2006.00788.x
Shahverdi A., Rastegarnia A., Topraggaleh T.R. (2014): Effect of extender and equilibration time on post thaw motility and chromatin structure of buffalo bull (Bubalus bubalis) spermatozoa. Cell Journal, 16, 279–288.
Simonik O., Sichtar J., Krejcarkova A., Rajmon R., Stadnik L., Beran J., Dolezalova M., Biniova Z. (2015): Computer assisted sperm analysis – the relationship to bull field fertility, possible errors and their impact on outputs: A review. The Indian Journal of Animal Sciences, 85, 3–11.
Spalekova E., Makarevich A., Stadnik L., Kubovicova E. (2014): Motility and viability of bull sperm in relation to incidence of malformed sperm. Reproduction in Domestic Animals, 49, 95–96.
Stadnik L., Louda F., Jezkova A. (2002): The effect of selected factors at insemination on reproduction of Holstein cows. Czech Journal of Animal Science, 47, 169–175.
Stadnik L., Duchacek J., Beran J., Tousova R., Ptacek M. (2015a): Relationships between milk fatty acids composition in early lactation and subsequent reproductive performance in Czech Fleckvieh cows. Animal Reproduction Science, 155, 75–79.
Stadnik L., Rajmon R., Beran J., Simonik O., Dolezalova M., Sichtar J., Stupka R., Folkova P. (2015b): Influence of selected factors on bovine spermatozoa cold shock resistance. Acta Veterinaria Brno, 84, 125–131.
Thurston L.M., Watson P.F., Holt W.V. (2002): Semen cryopreservation: a genetic explanation for species and individual variation? Cryo Letters, 23, 255–262.
Tuncer Pürhan Barbaros, Sarıözkan Serpil, Bucak Mustafa Numan, Ulutaş Pınar Alkım, Akalın Pınar Peker, Büyükleblebici Serhat, Canturk Fazile (2011): Effect of glutamine and sugars after bull spermatozoa cryopreservation. Theriogenology, 75, 1459-1465  https://doi.org/10.1016/j.theriogenology.2010.12.006
Watson P.F (2000): The causes of reduced fertility with cryopreserved semen. Animal Reproduction Science, 60-61, 481-492  https://doi.org/10.1016/S0378-4320(00)00099-3
Zhang X.-G., Hong J.-Y., Yan G.-J., Wang Y.-F., Li Q.-W., Hu J.-H. (): Association of heat shock protein 70 with motility of&nbsp;frozen-thawed sperm in bulls. Czech Journal of Animal Science, 60, 256-262  https://doi.org/10.17221/8239-CJAS
download PDF

© 2019 Czech Academy of Agricultural Sciences