Differences between chemical analysis and portable near-infrared reflectance spectrometry in maize hybrids

https://doi.org/10.17221/23/2022-CJASCitation:

Loučka R., Jambor V., Nedělník J., Lang J., Homolka P., Jančík F., Koukolová V., Kubelková P., Tyrolová Y., Výborná A. (2022): Differences between chemical analysis and portable near-infrared reflectance spectrometry in maize hybrids. Czech J. Anim. Sci. 176-184.

download PDF

The aim of this study is to compare the differences between four maize hybrids in terms of nutrient determination by portable near-infrared reflectance spectrometer (pNIRS) and chemical analysis; each of the hybrids was grown in the same locality from 2018 to 2020. The topic relates to the variability of the feed value of maize being an important feedstuff in livestock nutrition. The nutritional values determined by pNIRS in comparison with the chemical analysis were higher (P < 0.001) in starch and ash content but lower in dry matter, neutral detergent fibre and crude protein (CP) content. The digestibility levels of neutral detergent fibre and the net energy of lactation as well as the potential milk production per hectare in relation to each tonne of dry matter were also lower. According to this result, it would be necessary to calibrate all tested indicators for a given spectrometer. However, the pNIRS results are useful for evaluating nutrient variability; the standard deviation of the values found in pNIRS was mostly lower than that determined chemically. The pNIRS results are also useful for making practical adjustments to the total mixed rations when calculated from actual chemical analysis if the correlation between the two methods is used; the correlation between the pNIRS and chemical results was found to be significant (P < 0.05) in terms of all the indicators.

References:
AOAC – Association of Official Analytic Chemists. Official methods of analysis. 18th ed. Gaithersburg, USA: AOAC International; 2005.
 
Argillier O, Barriere Y, Traineau R, Emile JC, Hebert Y. Genotype × environment interactions for digestibility traits in silage maize estimated from in vivo measurements with standard sheep. Plant Breed. 1997 April 28;116(5):423-7. https://doi.org/10.1111/j.1439-0523.1997.tb01025.x
 
Bal MA, Shaver RD, Shinners KJ, Coors JG, Lauer JG, Straub RJ, Koegel RG. Stage of maturity, processing, and hybrid effects on ruminal in situ disappearance of whole-plant corn silage. Anim Feed Sci Tech. 2000 July 31;86(1-2):83-94.  https://doi.org/10.1016/S0377-8401(00)00163-2
 
Barriere Y, Guillet C, Goffner D, Pichon M. Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review. Anim Res. 2003 May-Jun;52(3):193-228. https://doi.org/10.1051/animres:2003018
 
Barriere Y, Emile JC, Traineau R, Traineau R, Surault F, Briand M, Gallais A. Genetic variation for organic matter and cell wall digestibility in silage maize. Lessons from a 34-year long experiment with sheep in digestibility crates. Maydica. 2004 Mar 26;49(2):115-26.
 
Boon EJMC, Struik PC, Engels FM, Cone JW. Stem characteristics of two forage maize (Zea mays L.) cultivars varying in whole plant digestibility. IV. Changes during the growing season in anatomy and chemical composition in relation to fermentation characteristics of a lower internode. NJAS Wagening J Life Sci. 2012 Jun 18;59(1-2):13-23. https://doi.org/10.1016/j.njas.2011.05.001
 
CHMI – Czech Hydrometeorological Institute. Historical data – Meteorology and Climatology [Internet]. Prague: CHMI. 2021. Available from: https://www.chmi.cz/historicka-data/pocasi/zakladni-informace?l=en.
 
Evangelista C, Basirico L, Bernabucci U. An overview on the use of near infrared spectroscopy (NIRS) on farms for the management of dairy cows. Agriculture. 2021 Mar 30;11(4): 21 p. https://doi.org/10.3390/agriculture11040296
 
Gruber L, Terler G, Knaus W. Nutrient composition, ruminal degradability and whole tract digestibility of whole crop maize silage from nine current varieties. Arch Anim Nutr. 2018 Feb 20;72(2):121-37. https://doi.org/10.1080/1745039X.2018.1436665
 
Khan SH, Khan AG, Sarwar M, Azim A. Effect of maturity on production efficiency, nutritive value and in situ nutrients digestibility of three cereal fodders. Int J Agric Res. 2007;2(11):900-6.  https://doi.org/10.3923/ijar.2007.900.909
 
Kruse S, Herrmann A, Kornher A, Taube F. Evaluation of genotype and environmental variation in fibre content of silage maize using a model-assisted approach. Europ J Agron. 2008 Apr 1;28(3):210-23. https://doi.org/10.1016/j.eja.2007.07.007
 
Lynch JP, O’Kiely P, Doyle EM. Yield, quality and ensilage characteristics of whole-crop maize and of the cob and stover components: Harvest date and hybrid effects. Grass Forage Sci. 2012 Apr 27;67(4):472-87.  https://doi.org/10.1111/j.1365-2494.2012.00868.x
 
Marchesini G, Serva L, Garbin E, Mirisola M, Andrighetto I. Near-infrared calibration transfer for undried whole maize plant between laboratory and on-site spectrometers. Ital J Anim Sci. 2018 Jan 2;17(1):66-72. https://doi.org/10.1080/1828051X.2017.1345660
 
Monteiro A, Santos S, Goncalves P. Precision agriculture for crop and livestock farming – Brief review. Animals. 2021 Aug 9;11(8): 18 p. https://doi.org/10.3390/ani11082345
 
Oba M, Allen MS. Evaluation of the importance of the digestibility of neutral detergent fiber from forage: Effects on dry matter intake and milk yield of dairy cows. J Dairy Sci. 1999 Mar 1;82(3):589-96. https://doi.org/10.3168/jds.S0022-0302(99)75271-9
 
Orskov ER, McDonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci. 1979 Apr;92(2):499-503. https://doi.org/10.1017/S0021859600063048
 
Pierce FJ, Nowak P. Aspects of precision agriculture. Adv Agron. 1999 Jan 1;67:1-85.
 
Prion S, Haerling KA. Making sense of methods and measurement: Pearson product-moment correlation coefficient. Clin Simul Nurs. 2014 Nov 1;10(11):587-8. https://doi.org/10.1016/j.ecns.2014.07.010
 
Puth MT, Neuhauser M, Ruxton GD. Effective use of Pearson’s product-moment correlation coefficient. Anim Behav. 2014 Jul 1;93:183-9. https://doi.org/10.1016/j.anbehav.2014.05.003
 
Schonleben M, Mentschel J, Strelec L. Towards smart dairy nutrition: Improving sustainability and economics of dairy production. Czech J Anim Sci. 2020 May 31;65(5):153-61. https://doi.org/10.17221/16/2020-CJAS
 
Schwab EC, Shaver RD, Lauer JG, Coors JG. Estimating silage energy value and milk yield to rank corn hybrids. Anim Feed Sci Tech. 2003 Oct 3;109(1-4):1-18. https://doi.org/10.1016/S0377-8401(03)00210-4
 
Shaver RD. Corn silage evaluation: The MILK2006 update. In: Proceedings of the 41st Pacific Northwest Animal Nutrition Conference; 2006 October 3-5; Vancouver, Canada. p. 71.
 
Taube F, Vogeler I, Kluss C, Herrmann A, Hasler M, Rath J, Loges R, Malish CS. Yield progress in forage maize in NW Europe-breeding progress or climate change effects? Front Plant Sci. 2020 Aug 18;11: 16 p. https://doi.org/10.3389/fpls.2020.01214
 
Van Es AJH. Feed evaluation for ruminants. I. The systems in use from May 1977-onwards in The Netherlands. Livest Prod Sci. 1978 Oct 1;5(4):331-45. https://doi.org/10.1016/0301-6226(78)90029-5
 
Vencl B, Frydrych Z, Krasa A, Pospisil R, Pozdisek J, Sommer A, Simek M, Zeman L. The new systems of feed evaluation for cattle. Prague: AZV CSFR; 1991. 134 p. Czech.
 
Zhang H, Xu G. Physicochemical properties of vitreous and floury endosperm flours in maize. Food Sci Nutr. 2019 Jul 4;7(8):2605-12. https://doi.org/10.1002/fsn3.1114
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti