The role of molecular genetics in animal breeding: A minireview

 

https://doi.org/10.17221/251/2020-CJASCitation:

Kyselová J., Tichý L., Jochová K. (2021): The role of molecular genetics in animal breeding: A minireview. Czech J. Anim. Sci., 66: 107–111.

download PDF

Current animal breeding approaches are strongly associated with the development of sophisticated molecular genetics methods and techniques. Worldwide expansion of genomic selection can be achieved by the identification of genetic DNA markers and implementation of the microarray (“chip”) technology. Further advancement was associated with next-generation sequencing methods, high-throughput genotyping platforms, targeted genome editing techniques, and studies of epigenetic mechanisms. The remarkable development of “omics” technologies, such as genomics, epigenomics, transcriptomics, proteomics and metabolomics, has enabled individual genomic prediction of animal performance, identification of disease-causing genes and biomarkers for the prevention and treatment and overall qualitative progress in animal production.

 

References:
Aguilar MD, Ponce SIR, Lopez FJR, Padilla EG, Pelaez CGV, Bagnato A, Strillacci MG. Genome-wide association study for milk somatic cell score in holstein cattle using copy number variation as markers. J Anim Breed Genet. 2017 Feb;134(1):49-59. https://doi.org/10.1111/jbg.12238
 
Albrecht E, Komolka K, Ponsuksili S, Gotoh T, Wimmers K, Maak S. Transcriptome profiling of Musculus longissimus dorsi in two cattle breeds with different intramuscular fat deposition. Genom Data. 2016 Mar 1;7:109-11. https://doi.org/10.1016/j.gdata.2015.12.014
 
Banos G, Bramis G, Bush SJ, Clark EL, McCulloch MEB, Smith J, Schulze G, Arsenos G, Hume DA, Psifidi A. The genomic architecture of mastitis resistance in dairy sheep. BMC Genom. 2017 Aug 16;18(1): [18 p.]. https://doi.org/10.1186/s12864-017-3982-1
 
Bi H, Xie S, Cai CH, Qian L, Jiang S, Xiao G, Li B, Li X, Cui W. Frameshift mutation in myostatin gene by zinc-finger nucleases results in a significant increase in muscle mass in Meishan sows. Czech J Anim Sci. 2020 May 31;65(5):182-91.
 
Cai ZX, Guldbrandtsen B, Lund MS, Sahana G. Prioritizing candidate genes for fertility in dairy cows using gene-based analysis, functional annotation and differential gene expression. BMC Genom. 2019 Dec 1;20(1): [9 p.]. https://doi.org/10.1186/s12864-019-5638-9
 
Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstergard TS, Fahrenkrug SC. Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol. 2016 May 6;34(5):479-81. https://doi.org/10.1038/nbt.3560
 
Daetwyler HD, Capitan A, Pausch H, Stothard P, Van Binsbergen R, Brondum RF, Liao X, Djari A, Rodriguez SC, Grohs C, Esquerre D, Bouchez O, Rossignol MN, Klopp Ch, Rocha D, Fritz S, Eggen A, Bowman PJ, Coote D, Chamberlain AJ, Anderson Ch, VanTassell CP, Hulsegge I, Goddard ME, Guldbrandtsen B, Lund MS, Veerkamp RF, Boichard DA, Fries R, Hayes BJ. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat Genet. 2014 Jul 13;46(8):858-65. https://doi.org/10.1038/ng.3034
 
Fleming A, Abdalla EA, Maltecca C, Baes CF. Invited review: Reproductive and genomic technologies to optimize breeding strategies for genetic progress in dairy cattle. Archiv Anim Breed. 2018 Jan 23;61(1):43-57. https://doi.org/10.5194/aab-61-43-2018
 
Georges M, Charlier C, Hayes B. Harnessing genomic information for livestock improvement. Nat Rev Genet. 2019 Mar;20(3):135-56. https://doi.org/10.1038/s41576-018-0082-2
 
Jenko J, Gorjanc G, Cleveland MA, Varshney RK, Whitelaw CBA, Woolliams JA, Hickey JM. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genet Select Evol. 2015 Dec;47(1): [4 p.]. https://doi.org/10.1186/s12711-015-0144-2
 
Kalds P, Gao YW, Zhou SW, Cai B, Huang XX, Wang XL, Chen YL. Redesigning small ruminant genomes with CRISPR toolkit: Overview and perspectives. Theriogenology. 2020 Apr 15;147:25-33. https://doi.org/10.1016/j.theriogenology.2020.02.015
 
Killeen AP, Morris DG, Kenny DA, Mullen MP, Diskin MG, Waters SM. Global gene expression in endometrium of high and low fertility heifers during the mid-luteal phase of the estrous cycle. BMC Genom. 2014 Dec;15(1): [18 p.]. https://doi.org/10.1186/1471-2164-15-234
 
Kim S, Lim B, Kim K, Do K. QTL fine mapping for intramuscular fat and fatty acid composition using high-density SNP chip array on SSC12 in Korean native pig × Yorkshire F2 population. Czech J Anim Sci. 2019 Apr 9;64(4):180-8. https://doi.org/10.17221/50/2018-CJAS
 
Ni LG, Song CY, Wu XS, Zhao XT, Wang XY, Li BC, Gan Y. RNA-seq transcriptome profiling of porcine lung from two pig breeds in response to Mycoplasma hyopneumoniae infection. PeerJ. 2019 Oct 21;7: [21 p.]. https://doi.org/10.7717/peerj.7900
 
Rexroad C, Vallet J, Matukumalli LK, Reecy J, Bickhart D, Blackburn H, Boggess M, Cheng H, Clutter A, Cockett N, Ernst C, Fulton JE, Liu J, Lunney J, Neibergs H, Purcell C, Smith TPL, Sonstegard T, Taylor J, Telugu B, Van Eenennaam A, Van Tassell CP, Wells K, Martin A, Murdoch B, Sayre B, Keel B, Schmidt C, Hostetler C, Seabury C, Tuggle C, Elsik C, Gill C, Ciobanu D, Bailey D, Hamernik D, Grings E, Connor E, Rohrer G, Plastow G, Rosa G, Zhou HJ, Koltes J, Decker J, Weller J, Woodward-Greene J, Steibel J, Long J, Lee K, Kuehn L, Worku M, Salem M, McCue M, Serao N, Riggs P, Sponenberg P, Schnabel R, Brooks S, Fernando S, McKay S, Schmitz-Esser S, White S, Lamont S, Kurt T, Palti Y. Genome to phenome: Improving animal health, production, and well-being – A new USDA blueprint for animal genome research 2018–2027. Front Genet. 2019 May 16;10: [29 p.].
 
Ryu J, Prather RS, Lee K. Use of gene-editing technology to introduce targeted modifications in pigs. J Anim Sci Biotechnol. 2018 Jan;9(1): [10 p.]. https://doi.org/10.1186/s40104-017-0228-7
 
Sandri M, Stefanon B, Loor JJ. Transcriptome profiles of whole blood in Italian Holstein and Italian Simmental lactating cows diverging for genetic merit for milk protein. J Dairy Sci. 2015 Sep 1;98(9):6119-27. https://doi.org/10.3168/jds.2014-9049
 
Simianer H. Can molecular genetics help improve breeding for complex traits? [abstract]. In: Book of abstracts of 37th International Society for Animal Genetics Conference; 2019 Jul 7-12; Lleida, Spain. [Champaign, IL, USA]: ISAG; 2019. p. 1.
 
Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, Dong Z, Niu Y, Shi B, Cai B, Liu J, Huang S, Yan H, Zhao X, Zhou G, He X, Chen X, Yang Y, Jiang Y, Shi L, Tian X, Wang Y, Ma B, Huang X, Qu L, Chen Y. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep. 2015 Sep 10;5(1): [9 p.]. https://doi.org/10.1038/srep13878
 
Wicik Z, Gajewska M, Majewska A, Walkiewicz D, Osinska E, Motyl T. Characterization of microRNA profile in mammary tissue of dairy and beef breed heifers. J Anim Breed Genet. 2016 Feb;133(1):31-42. https://doi.org/10.1111/jbg.12172
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti