Economic weights of current and new breeding objective traits in Aberdeen Angusá Z., Krupa E., Wolfová M. (2020): Economic weights of current and new breeding objective traits in Aberdeen Angus. Czech J. Anim. Sci., 65: 77-85.
download PDF

Breeding values estimated for growth, calving performance, and exterior traits are currently combined into simple selection indices for bulls, cows, and heifers of the Aberdeen Angus breed. To establish a comprehensive economic index for this breed, the absolute and relative economic weights (EW) for a complex of 16 production, functional, carcass, and feed efficiency traits were calculated. The absolute EW of a trait expressed the difference in the present values of profit that will be obtained from the descendants of a bull with the average breeding value for this trait, and descendants of a bull with the breeding value one unit higher than the average one. The relative EW of a trait was defined as the standardised EW of a trait (i.e. EW per genetic standard deviation) expressed as percentage of the sum of standardised EWs of all evaluated traits. Sensitivity analysis was conducted to explore the EW of traits under variable production and economic conditions. Variability in the marketing strategy, in product prices and costs, and in trait means was considered in this analysis. Relative EW of the feed efficiency of breeding heifers and of cows reached 4%. The highest relative EW was obtained in three growth traits: weight gains of calves from birth to 120, from 120 to 210, and from 210 to 365 days of age (66% combined). The survival rate of calves until weaning and cow productive lifetime reached 11% and 8% of the total economic importance of traits, respectively. These growth and functional traits accounted for 84% (in marketing strategy involving selling breeding animals) to 90% (in populations with high growth intensity) of the total economic weight of all 16 evaluated traits. Therefore, these traits should be considered as new selection criteria when constructing a comprehensive selection index for the Czech Aberdeen Angus population in future.

Aby BA, Aass L, Sehested E, Vangen O. Effect of incorporating greenhouse gas emission costs into economic values of traits for intensive and extensive beef cattle breeds. Livest Sci. 2013 Dec 1;158(1-3):1-11.
Albera A, Carnier P, Groen AF. Definition of a breeding goal for the Piemontese breed: economic and biological values and their sensitivity to production circumstances. Livest Prod Sci. 2004 Aug 1;89(1):66-77.
Arthur PF, Archer JA, Herd JM. Feed intake and efficiency in beef cattle: overview of recent Australian research and challenges for the future. Aust J Exp Agric. 2004 Jan;44(5):361-9.
Basarab JA, Beauchemin KA, Baron VS, Ominski KH, Guan LL, Miller SP, Crowley JJ. Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production. Animal. 2013 Jun;7(Suppl 2):303-15.
Brzakova M, Svitakova A, Citek J, Vesela Z, Vostry L. Genetic parameters of longevity for improving profitability of beef cattle. J Anim Sci. 2019 Jan 1;97(1):19-28.
Burrow HM, Mans BJ, Cardoso FF, Birkett MA, Kotze AC, Hayes BJ, Mapholi N, Dzama K, Marufu MC, Githaka NW, Djikeng A. Towards a new phenotype for tick resistance in beef and dairy cattle: A review. Anim Prod Sci. 2019 Jul 23;59(8):1401-27.
Gonzalez-Recio O, Pryce JE, Haile-Mariam M, Hayes BJ. Incorporating heifer feed efficiency in the Australian selection index using genomic selection. J Dairy Sci. 2014 Jun 1;97(6):3883-93.
Hietala P, Wolfova M, Wolf J, Kantanen J, Juga J. Economic values of production and functional traits, including residual feed intake, in Finnish milk production. J Dairy Sci. 2014 Feb 1;97(2):1092-106.
Keller K, Wolfova M, Wolf J, Fekete Z, Komlosi I, Szabo F. Impact of mature cow weight on farm profitability and economic weights of beef cattle traits. Arch Tierzucht. 2009 Jan;52(3):255-64.
Krupova Z, Wolfova M, Krupa E, Pribyl J, Zavadilova L. Claw health and feed efficiency as new selection criteria in the Czech Holstein cattle. Czech J Anim Sci. 2018 Sep 27;63(10):408-18.
Safus P, Pribyl J, Vesela Z, Vostry L, Stipkova M, Stadnik L. Selection indexes for bulls of beef cattle. Czech J Anim Sci. 2006 Jul;51(7):285-98.
Santana MHA, Rossi P, Almeida R, Cucco DC. Feed efficiency and its correlations with carcass traits measured by ultrasound in Nellore bulls. Livest Sci. 2012 May 1;145(1-3):252-7.
Syrucek J, Barton L, Kvapilik J, Vacek M, Stadnik L. Assessment of profitability and break-even points in suckler cow herds. Acta Univ Agric Silvic Mendel Brun. 2018 Jun 28;66(3):707-15.
Vostry L, Vesela Z, Krupa E. Genetic evaluation of the growth of beef bulls at a performance test station. J Anim Feed Sci. 2014 Mar 10;23(1):37-44.
Williams YJ, Pryce JE, Grainger C, Wales WJ, Linden N, Porker M, Hayes BJ. Variation in residual feed intake in Holstein-Friesian dairy heifers in southern Australia. J Dairy Sci. 2011 Sep 1;94(9):4715-25.
Wolf J, Wolfova M, Krupa E. User’s manual for the program package ECOWEIGHT (C programs for calculating economic weights in livestock), version 6.0.4. Part 1: Programs EWBC (version 3.0.4) and EWDC (version 2.2.3) for cattle [Internet]. Czech Republic: Institute of Animal Science Prague; 2013 (cited 2019 Jun 25). Available from:
Wolfova M, Wolf J, Pribyl J, Zahradkova R, Kica J. Breeding objectives for beef cattle used in different production systems: 1. Model development. Livest Prod Sci. 2005a Aug 15;95(3):201-15.
Wolfova M, Wolf J, Zahradkova R, Krupa E. Impact of different economical and production circumstances on the relative importance of traits in beef cattle breeding. Zuchtungskunde. 2005b Jan 1;77(1):35-46.
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti