Enteric methane emissions in crossbred heifers fed a basal ration of low-quality tropical grass supplemented with different nitrogen sources


Elshareef A.A., Arroyave-Jaramillo J., Zavala-Escalante L.M., Piñeiro-Vázquez A.T., Aguilar-Pérez C.F., Solorio-Sánchez F.J., Ku-Vera J.C. (2020): Enteric methane emissions in crossbred heifers fed a basal ration of low-quality tropical grass supplemented with different nitrogen sources. Czech J. Anim. Sci., 65: 135-144.

download PDF

The aim of the present study was to assess enteric methane (CH4) emissions by crossbred heifers fed a basal ration of low-quality tropical grass supplemented with different nitrogen sources. Four crossbred heifers (Bos taurus × Bos indicus) with an average live weight (LW) of 355 ± 6.01 kg were used in a 4 × 4 crossover Latin square design with four periods of fifteen days each. Basal ration was chopped low-quality tropical grass Pennisetum purpureum fed to cover ~70% of metabolizable energy requirements for maintenance of heifers and it was supplemented with either poultry litter (control ration, T1), urea (T2), canola meal (T3) or soybean meal (T4). Enteric CH4 emissions of heifers were measured in open-circuit respiration chambers for 23 hours. Dry matter (DM), neutral detergent fibre (NDF) and acid detergent fibre (ADF) intakes decreased when feeding urea (1.6% of ration) as a source of nitrogen (7.64, 3.78, and 1.83 kg/d, respectively). Rations including urea (T2) or canola meal (T3) given to heifers fed a basal ration of low-quality Pennisetum purpureum grass significantly reduced acetic acid concentration and increased propionic acid concentration in the rumen and decreased the loss of gross energy as methane (P = 0.004). Incorporation of urea or canola meal in the ration of cattle fed low-quality tropical grass can decrease methane emissions and improve rumen fermentation patterns.

Anantasook N, Wanapat M, Cherdthong A, Gunun P. Changes of microbial population in the rumen of dairy steers as influenced by plant containing tannins and saponins and roughage to concentrate ratio. Asian Austral J Anim. 2013 Nov;26(11):1583.  https://doi.org/10.5713/ajas.2013.13182
AOAC – Association of Official Analytical Chemists. Official methods of analysis’. 15th ed. Washington, DC, USA: Association of Official Analytical Chemists; 1990.
Arceo-Castillo JI, Montoya-Flores MD, Molina-Botero IC, Pineiro-Vazquez AT, Aguilar-Perez CF, Ayala-Burgos AJ, Solorio-Sanchez FJ, Castelan-Ortega OA, Quintana-Owen P, Ku-Vera JC. Effect of the volume of methane released into respiration chambers on full system methane recovery. Anim Feed Sci Tech. 2019 Mar 1;249:54-61. https://doi.org/10.1016/j.anifeedsci.2019.02.001
Beauchemin KA, McGinn SM. Methane emissions from beef cattle: Effects of fumaric acid, essential oil and canola oil. J Anim Sci. 2006 Jun;84(6):1489-96. https://doi.org/10.2527/2006.8461489x
Beauchemin KA, Ungerfeld EM, Eckard RJ, Wang M. Fitty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal. 2020 Mar;14(S1):s2-s16. https://doi.org/10.1017/S1751731119003100
Bhatta R, Enishi O, Yabumoto Y, Nonaka I, Takusari N, Higuchi K, Tajima K, Takenaka A, Kurihara M. Methane reduction and energy partitioning in goats fed two concentrations of tannin from Mimosa spp. J Agri Sci. 2013 Feb;151(1):119-28.  https://doi.org/10.1017/S0021859612000299
Boadi D, Benchaar C, Chiquette J, Masse D. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canad J Anim Sci. 2004 Sep 1;84(3):319-35. https://doi.org/10.4141/A03-109
Brouwer E. Report of subcommittee on constants and factors. In: Blaxter KL, editor. Energy metabolism of farm animals: Third symposium on energy metabolism. London: Academic Press; 1965. p. 441-3.
Burque AR, Abdullah M, Babar ME, Javed K, Nawaz H. Effect of urea feeding on feed intake and performance of male buffalo calves. J Anim Pl Sci. 2008 Jan 1;18(1):1-6.
Canul-Solis JR, Pineiro-Vazquez AT, Arceo-Castillo J, Alayon-Gamboa JA, Ayala-Burgos AJ, Aguilar-Perez CF, Solorio-Sanchez FJ, Castelan-Ortega OA, Lachica-Lopez M, Quintana-Owen P, Ku-Vera JC. Design and construction of low-cost respiration chambers for ruminal methane measurements in ruminants. Rev Mex Cienc Pecu. 2017;8(2):185-92. https://doi.org/10.22319/rmcp.v8i2.4442
Cody RP, Smith JK. Applied statistics and the SAS programming language. 3rd ed. New York: Elsevier Science Publishing, Inc.; 1991.
Garcia E. Modificaciones al sistema de clasificación climática de Koeppen para adaptarlo a las condiciones de la República Mexicana. 2nd ed. D.F., México: Instituto de Geografía Universidad Nacional Autónoma de México. 1981. Spanish.
Gunun P, Wanapat M, Anantasook N. Effects of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility in dairy steers. Asian-Australas J Anim Sci. 2013 Dec;26(12):1689-97. https://doi.org/10.5713/ajas.2013.13190
Harper LA, Denmead OT, Freney JR, Byers FM. Direct measurements of methane emissions from grazing and feedlot cattle. J Anim Sci. 1999 Jun 1;77(6):1392-401. https://doi.org/10.2527/1999.7761392x
He SJ, Wang JL, Zhao X. Effect of ammonium concentration on the methanogenic activity of anaerobic granular sludge. J Tsinghua Uni. 2005;45(9):1294-6.
Hulshof RBA, Berndt A, Gerrits WJ, Dijkstra J, Van Zijderveld SM, Newbold JR, Perdok HB. Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. J Anim Sci. 2012 Jul;90(7):2317-23. https://doi.org/10.2527/jas.2011-4209
IPCC – Intergovernmental Panel on Climate Change. Guidelines for national greenhouse gas inventories [Internet]. Hayama, Japan: Institute for Global Environmental Strategies; 2006 [Dec 10, 2019]. Available from http://www.ipcc.ch.
Johnson DE, Ward GM. Estimates of animal methane emissions. Environ Monit Assess. 1996 Sep 1;42(1-2):133-41.  https://doi.org/10.1007/BF00394046
Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci. 1995 Aug 1;73(8):2483-92. https://doi.org/10.2527/1995.7382483x
Kennedy PM, Charmley E. Methane yields from Brahman cattle fed tropical grasses and legumes. Anim Prod Sci. 2012 Apr 5;52(4):225-39. https://doi.org/10.1071/AN11103
Klop G, Hatew B, Bannink A, Dijkstra J. Feeding nitrate and docosahexaenoic acid affects enteric methane production and milk fatty acid composition in lactating dairy cows. J Dairy Sci. 2016 Feb;99(2):1161-72. https://doi.org/10.3168/jds.2015-10214
Kostenbauder MJ, Coleman SW, Chase JC, Kunkle WE, Hall MB, Martin FG. Intake and digestibility of Bahia grass hay by cattle that are supplemented with molasses or molasses-urea with or without soybean hulls. Profession Anim Sci. 2007 Aug 1;23(4):373-80. https://doi.org/10.15232/S1080-7446(15)30991-8
Ku-Vera JC, Valencia-Salazar SS, Solorio-Sanchez FJ. Determination of methane yield in cattle fed tropical grasses as measured in open-circuit respiration chambers. Agr Forest Meteorol. 2018 Aug 15;258:3-7. https://doi.org/10.1016/j.agrformet.2018.01.008
Lage HF, da Borges A, Silva RR, Jayme DG. Methane production by two breeds of cattle in tropical conditions. J Anim Sci Res. 2017 Sep;1(1)1:1-14. https://doi.org/10.16966/2576-6457.102
Lanyasunya TP, Rong WH, Abdulrazak SA, Kaburu PK, Makori JO, Onyago TA, Mwangi DM. Factors limiting use of poultry manure as protein supplement for dairy cattle on smallholder farms in Kenya. Internat J Poultry Sci. 2006;5(1):75-80. https://doi.org/10.3923/ijps.2006.75.80
Mathison GW. Effect of canola oil on methane production in steers. Canad J Anim Sci. 1997;77:545.
Molina-Botero IC, Arroyave-Jaramillo J, Valencia-Salazar S, Barahona-Rosales R, Aguilar-Perez CF, Burgosa AA, Arango J, Ku-Vera JC. Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Anim Feed Sci Technol. 2019 May 1;251:1-11. https://doi.org/10.1016/j.anifeedsci.2019.01.011
Moumen A, Azizi G, Chekroun KB, Baghour M. The effects of livestock methane emission on the global warming: A review. Int J Global Warm. 2016;9(2):229-53. https://doi.org/10.1504/IJGW.2016.074956
Niu M, Appuhamy JA, Leytem AB, Dungan RS, Kebreab E. Effect of dietary crude protein and forage contents on enteric methane emissions and nitrogen excretion from dairy cows simultaneously. Anim Prod Sci. 2016 Feb 9;56(3):312-21. https://doi.org/10.1071/AN15498
NRC – National Research Council. Nutrient requirements of dairy cattle. 7th ed. Washington, DC: Washington National Academy Press; 2001. 381 p.
Olijhoek DW, Hellwing AF, Brask M, Weisbjerg MR, Hojberg O, Larsen MK, Dijkstra J, Erlandsen EJ, Lund P. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. J Dairy Sci. 2016 Aug 1;99(8):6191-205. https://doi.org/10.3168/jds.2015-10691
Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, Vellinga T, Henderson B, Steinfeld H. Greenhouse gas emissions from ruminant supply chain: A global life cycle assessment. Rome: Food and Agriculture Organization of the United Nations (FAO); 2013.
Orskov ER. Capacity for digestion and effects of composition of absorbed nutrients on animal metabolism. J Anim Sci. 1977 Sep 1;45(3):600-8. https://doi.org/10.2527/jas1977.453600x
Pinares-Patino CS, Hour P, Jouany JP, Martin C. Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle. Agric Ecosyst Environ. 2007 Jun 1;121(1-2):30-46. https://doi.org/10.1016/j.agee.2006.03.024
Pineiro-Vazquez AT, Jimenez-Ferrer GO, Chay-Canul AJ, Casanova-Lugo F, Diaz-Echeverria VF, Ayala-Burgos AJ, Solorio-Sanchez FJ, Aguilar-Perez CF, Ku-Vera JC. Intake, digestibility, nitrogen balance and energy utilization in heifers fed low-quality forage and Leucaena leucocephala. Anim Feed Sci Tech. 2017 Jun 1;228:194-201. https://doi.org/10.1016/j.anifeedsci.2017.04.009
Poppi DP, McLennan SR. Protein and energy utilization by ruminants at pasture. J Anim Sci. 1995 Jan 1;73(1):278-90. https://doi.org/10.2527/1995.731278x
Ramirez-Bribiesca JE, McAllister T, Ungerfeld E, Ortega-Cerrilla ME. In vitro rumen fermentation and effect of protein fractions of canola meals on methane production. Sci Agric. 2018 Jan;75(1):12-7. https://doi.org/10.1590/1678-992x-2016-0096
Ramos-Morales E, Arco-Perez A, Martin-Garcia AI, Yanez-Ruiz DR, Frutos HG. Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Anim Feed Sci and Technol. 2014 Dec 1;198:57-66. https://doi.org/10.1016/j.anifeedsci.2014.09.016
Ryan JP. Determination of volatile fatty acids and some related compounds in ovine rumen fluid, urine and blood plasma by gas-liquid chromatography. Analyt Biochem. 1980 Nov 1;108(2):374-84. https://doi.org/10.1016/0003-2697(80)90602-8
SAS. Institute SAS/STAT, Software 2006, Version 9.00. Cary, NC: SAS; 2006.
Schneider BH, Flatt WP. The evaluation of feeds through digestibility experiments. Athens (Georgia): The University of Georgia Press; 1975. 423 p.
Singh S, Kushwaha BP, Nag SK, Mishra AK, Singh A, Anele UY. In vitro ruminal fermentation, protein and carbohydrate fractionation, methane production and prediction of twelve commonly used Indian green forages. Anim Feed Sci and Technol. 2012 Nov 22;178(1-2):2-11. https://doi.org/10.1016/j.anifeedsci.2012.08.019
Sujiang Z, Long C, Xuefeng G, Chunhui M, Aiwei G, Yingluck M. Effects of urea supplementation on rumen fermentation characteristics and protozoa population in vitro. J Applied Anim Research. 2016 Jan 1;44(1):1-4. https://doi.org/10.1080/09712119.2014.978779
Ulyatt MJ, Lassey KR. Methane emissions from pastoral systems: The situation in New Zealand. Arch Latinoam Prod Anim. 2001;9(1):118-26.
Valencia-Salazar SS, Pineiro-Vazquez AT, Lazos-Balbuena FJ, Uuh-Narvaez JJ, Segura-Campos MR, Ramirez-Aviles L, Solorio-Sanchez FJ, Ku-Vera JC. Potential of Samanea saman pod meal for enteric methane mitigation in crossbred heifers fed low-quality tropical grass. Agric and Forest Meteorol. 2018 Aug 15;258:108-16. https://doi.org/10.1016/j.agrformet.2017.12.262
Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991 Oct 1;74(10):3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Wanapat M, Polyorach S, Boonnop K, Mapato C, Cherdthong A. Effects of treating rice straw with urea or urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livestock Sci. 2009 Nov 1;125(2-3):238-43. https://doi.org/10.1016/j.livsci.2009.05.001
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti