Frameshift mutation inmyostatin gene byzinc-finger nucleases results ina significant increase inmuscle mass inMeishan sows

https://doi.org/10.17221/265/2019-CJASCitation:Bi H., Xie S., Cai C., Qian L., Jiang S., Xiao G., Li B., Li X., Cui W. (2020): Frameshift mutation in myostatin gene by zinc-finger nucleases results in a significant increase in muscle mass in Meishan sows. Czech J. Anim. Sci., 65: 182-191.
download PDF

Myostatin (MSTN) is a negative regulator of skeletal muscle growth and development. A significant increase in skeletal muscle was observed in Mstn−/− mice compared with wild-type mice. So far, there has been no report on porcine MSTN mutations leading to skeletal muscle hypertrophy. In this report a MSTN frameshift mutation missing 11 nucleotides in exon 2 was introduced into Meishan pigs by zinc finger nuclease (ZFN) technology. ZFN-edited MSTN−/− Meishan pigs were successfully produced by a cloning method of somatic cell nucleus transfer. Results from slaughter experiments indicated that lean meat yield increased 16.53% in about 80 kg (10-months-old) MSTN−/− Meishan sows compared with their corresponding wild-type counterparts. The lean percentage of carcass from MSTN−/− sows was 61.20% vs 48.25% for MSTN+/− sows and 44.67% for wild-type sows. The fat of MSTN−/− sows was significantly lower than that of MSTN+/− and wild-type sows. The loin eye area of MSTN−/− Meishan sows (56.42 cm2) was greater than that of MSTN+/− (37.39 cm2) and wild-type (26.26 cm2) sows. The muscle fibre area of longissimus muscle in wild-type Meishan sows (1 946 μm2) was significantly greater than that of MSTN+/− (1 324 μm2) and MSTN/− (1 419 μm2) sows. Moreover the significantly increased skeletal muscle in these MSTN−/− Meishan sows was mainly due to the increase in the number of myofibres rather than to hypertrophy. Compared with wild-type Meishan sows, it was noted that myofibres had transformed from type I to IIB in MSTN−/− Meishan sows. Our present study demonstrated that frameshift mutation in MSTN by ZFN technology led to a significant increase in muscle mass and a significant decrease in fat content in Meishan sows.

References:
Bellinge RH, Liberles DA, Iaschi SP, O’Brien PA, Tay GK. Myostatin and its implications on animal breeding: A review. Anim Genet. 2005 Feb;36(1):1-6. https://doi.org/10.1111/j.1365-2052.2004.01229.x
 
Bi Y, Hua Z, Liu X, Hua W, Ren H, Xiao H, Zhang L, Li L, Wang Z, Laible G, Wang Y, Dong F, Zheng X. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep. 2016 Aug 17;6:31729. https://doi.org/10.1038/srep31729
 
Claessens F, Denayer S, Van Tilborgh N, Kerkhofs S, Helsen C, Haelens A. Diverse roles of androgen receptor (AR) domains in AR-mediated signaling. Nucl Recept Signal. 2008 Jun 27;6:e008. https://doi.org/10.1621/nrs.06008
 
Dubois V, Laurent MR, Sinnesael M, Cielen N, Helsen C, Clinckemalie L, Spans L, Gayan-Ramirez G, Deldicque L, Hespel P, Carmeliet G, Vanderschueren D, Claessens F. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. Faseb J. 2014 Jul;28(7):2979-94. https://doi.org/10.1096/fj.14-249748
 
Girgenrath S, Song K,Whittemore LA. Loss of myostatin expression alters fiber-type distribution and expression of myosin heavy chain isoforms in slow- and fast-type skeletal muscle. Muscle Nerve. 2005 Jan;31(1):34-40. https://doi.org/10.1002/mus.20175
 
Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype In cattle. Nat Genet. 1997 Sep;17(1):71-4. https://doi.org/10.1038/ng0997-71
 
Lee SJ. Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol. 2004;20:61-86. https://doi.org/10.1146/annurev.cellbio.20.012103.135836
 
Lee YS, Lee SJ. Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(39):E3713-22. https://doi.org/10.1073/pnas.1309907110
 
Legault C. Selection of breeds, strains and individual pigs for prolificacy. J Reprod Fertil Suppl. 1985;33:151-66.
 
Ma D, Gao P, Qian L, Wang Q, Cai C, Jiang S, Xiao G, Cui W. Over-expression of porcine myostatin missense mutant leads to a gender difference in skeletal muscle growth between transgenic male and female mice. Int J Mol Sci. 2015a Aug;16(8):20020-32. https://doi.org/10.3390/ijms160820020
 
Ma D, Jiang S, Gao P, Qian L, Wang Q, Cai C, Xiao G, Jiang S, Cui W. Functional verification of a porcine myostatin propeptide mutant. Transgenic Res. 2015b Oct;24(5):837-45. https://doi.org/10.1007/s11248-015-9896-2
 
Manceau M, Gros J, Savage K, Thome V, McPherron A, Paterson B, Marcelle C. Myostatin promotes the terminal differentiation of embryonic muscle progenitors. Genes Dev. 2008 Mar 1;22(5):668-81. https://doi.org/10.1101/gad.454408
 
McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997 May 1;387(6628):83-90. https://doi.org/10.1038/387083a0
 
McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(23):12457-61. https://doi.org/10.1073/pnas.94.23.12457
 
Nygard AB, Jorgensen CB, Cirera S, Fredholm M. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Molecular Biology. 2007 Aug;8(1):67.  https://doi.org/10.1186/1471-2199-8-67
 
Qian L, Tang M, Yang J, Wang Q, Cai C, Jiang S, Li H, Jiang K, Gao P, Ma D. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype In Meishan pigs. Sci Rep. 2015 Sep 24;5:14435. https://doi.org/10.1038/srep14435
 
Qian L, Ma D, Gao P, Jiang S, Wang Q, Cai C, Xiao G. Muscle hypertrophy in transgenic mice due to over-expression of porcine myostatin mutated at its cleavage site. J Integr Agric. 2016 Nov 1;15(11):2571-7. https://doi.org/10.1016/S2095-3119(16)61336-9
 
Smet SD, Webb EC, Claeys E, Uytterhaegen L, Demeyer DI. Effect of dietary energy and protein levels on fatty acid composition of intramuscular fat in double-muscled Belgian Blue bulls. Meat Sci. 2000 Sep;56(1):73-9. https://doi.org/10.1016/S0309-1740(00)00023-1
 
Swatland HJ. Muscle growth in the fetal and neonatal pig. J Anim Sci. 1973 Aug;37(2):536-45. https://doi.org/10.2527/jas1973.372536x
 
Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, Dong Z, Niu Y, Shi B, Cai B, Liu J, Huang S, Yan H, Zhao X, Zhou G, He X. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep. 2015 Sep 10;5:13878. https://doi.org/10.1038/srep13878
 
Wegner J, Albrecht E, Fiedler I, Teuscher F, Papstein HJ, Ender K. Growth- and breed-related changes of muscle fiber characteristics in cattle. J Anim Sci. 2000 Jun;78(6):1485-96. https://doi.org/10.2527/2000.7861485x
 
Wigmore PM, Stickland NC. Muscle development in large and small pig fetuses. J Anat. 1983 Sep;137 (Pt 2):235-45.
 
Wolfman NM, McPherron AC, Pappano WN, Davies MV, Song K, Tomkinson KN, Wright JF, Zhao L, Sebald SM, Greenspan DS, Lee SJ. Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(26):15842-6. https://doi.org/10.1073/pnas.2534946100
 
Wydro RM, Nguyen HT, Gubits RM, Nadal-Ginard B. Characterization of sarcomeric myosin heavy chain genes. J Biol Chem. 1983 Jan 10;258(1):670-8.
 
Yang J, Ratovitski T, Brady JP, Solomon MB, Wells KD, Wall RJ. Expression of myostatin pro domain results in muscular transgenic mice. Mol Reprod Dev. 2001 Nov;60(3):351-61. https://doi.org/10.1002/mrd.1097
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti