Relationship between direct and maternal genetic effects on weaning weight of Limousin and crossbred beef calves

https://doi.org/10.17221/298/2020-CJASCitation:

Szabó F., Márton J., Szabó E., Szűcs M., Bene S. (2021): Relationship between direct and maternal genetic effects on weaning weight of Limousin and crossbred beef calves. Czech J Anim Sci.,66:262-270.

download PDF

Population genetic parameters, direct and maternal breeding value, the genetic trend in the weaning weight of Limousin beef cattle calves were estimated in the period 1992–2019. Data of 19 764 calves (15 437 purebred Limousin and 4 327 crossbred) were computed. Crossbred calves were sired by Limousin breeding bulls from Simmental dams. Calves in question came from 37 herds and from 240 sires in Hungary. DFREML and MTDFREML software was used for the estimation of population genetic parameters, BLUP animal model for breeding value estimation. Weighted linear regression model was used for describing genetic trends. The maternal heritability (h2m ± SE = 0.29 ± 0.03; 0.32 ± 0.10) was approximately half of the direct heritability (h2d ± SE = 0.63 ± 0.05; 0.68 ± 0.12). The direct maternal covariance is negative, the direct maternal genetic correlation coefficients (rdm ± SE = –0.80 ± 0.03 and –0.96 ± 0.07) are strong negative. The Spearman rank correlation between direct and maternal breeding value in purebred population is moderate and negative (rrank = –0.33; P < 0.01), in crossbred population it is strong and negative (rrank = –0.99; P < 0.01). According to direct and maternal breeding values of sires, the genetic trend of the weaning weight of purebred and crossbred Limousin calves appeared stagnant during the examined period (b = +0.01 kg/year to +0.19 kg/year).

References:
Albuquerque G, Meyer K. Estimates of direct and maternal genetic effects for weights from birth to 600 days of age in Nelore cattle. J Anim Breed Genet. 2001 Apr 5;118(2):83-92. https://doi.org/10.1046/j.1439-0388.2001.00279.x
 
Bene S, Fuller I, Fordos A, Szabo F. Weaning results of beef Hungarian Fleckvieh calves 2. Genetic parameters, breeding values. Arch Tierz. 2010 Oct;53(1):26-36. https://doi.org/10.5194/aab-53-26-2010
 
Boldman KG, Kriese LA, Van Vleck LD, Kachman SD. A manual for use of TDFREML. A set of programs to obtain estimates of variances and covariances. USDA-ARS, Clay Center, NE; 1993.
 
Boligon AA, Vicente IS, Roso VM, Pablos de Souza FR. Direct and maternal annual genetic changes for selected traits at weaning and yearling in beef cattle. Acta Sci Anim Sci. 2018 Dec;41(1): 9 p. https://doi.org/10.4025/actascianimsci.v41i1.42572
 
Brandt H, Mullenhoff A, Lambertz C, Erhardt G, Gauly M. Estimation of genetic and crossbreeding parameters for preweaning traits in German Angus and Simmental beef cattle and the reciprocal crosses. J Anim Sci. 2010 Jan 1;88(1):80-6. https://doi.org/10.2527/jas.2008-1742
 
Chud TCS, Caetano SL, Buzanskas ME, Grossi DA, Guidolin DGF, Nascimento GB, Munari DP. Genetic analysis for gestation length, birth weight, weaning weight, and accumulated productivity in Nellore beef cattle. Livest Sci. 2014 Dec 1;170(1):16-21. https://doi.org/10.1016/j.livsci.2014.09.024
 
Crews DH, Kemp RA. Contributions of preweaning growth information and maternal effects for prediction of carcass trait breeding values among crossbred beef cattle. Can J Anim Sci. 1999 Mar 1;79(1):17-25. https://doi.org/10.4141/A98-052
 
Cubas AC, Berger PJ, Healey MH. Genetic parameters for calving ease and survival at birth in Angus field data. J Anim Sci. 1991 Oct 1;69(10):3952-8. https://doi.org/10.2527/1991.69103952x
 
Dodenhoff J, Van Vleck LD, Gregory KE. Estimation of direct, maternal and grand maternal genetic effects for weaning weight in several breeds of beef cattle. J Anim Sci. 1999 Apr 1;77(4):840-5. https://doi.org/10.2527/1999.774840x
 
Gregory KE, Cundiff LV, Koch RM. Genetic and phenotypic (co)variances for growth and carcass traits of purebred and composite populations as beef cattle. J Anim Sci. 1995 Jul 1;73(7):1920-6. https://doi.org/10.2527/1995.7371920x
 
Henderson CR. Best linear unbiased estimation and prediction under a selection model. Biometrics. 1975;31(2):423-47. https://doi.org/10.2307/2529430
 
Kaps M, Herring WO, Lamberson WR. Genetic and environmental parameters for traits derived from the Brody growth curve and their relationships with weaning weight in Angus cattle. J Anim Sci. 2000 Jun 1;78(6):1436-42. https://doi.org/10.2527/2000.7861436x
 
Keeton LL, Green RD, Golden BL, Anderson KJ. Estimation of variance components and prediction of breeding values for scrotal circumference and weaning weight in Limousin cattle. J Anim Sci. 1996 Jan 1;74(1):31-6. https://doi.org/10.2527/1996.74131x
 
Koury Filho W, Albuquerque LG, Forni S, Silva JA, Yokoo MJ, Alencar MM. Estimativas de parametros geneticos para os escores visuais e suas associacoes com peso corporal em bovinos de corte [Genetic parameters estimates for visual scores and their association with body weight in beef cattle]. Rev Brasil Zootec. 2010 May;39(5):1015-22. Portugal. https://doi.org/10.1590/S1516-35982010000500011
 
Lee C, Van Tassel CP, Pollak EJ. Estimation of genetic variance and co-variance components for weaning weight in Simmental cattle. J Anim Sci. 1997 Feb;75(2):325-30. https://doi.org/10.2527/1997.752325x
 
Lengyel Z, Balika S, Polgar JP, Szabo F. Hazai limousin allomanyok elles lefolyasanak es valasztasi eredmenyeinek vizsgalata. 2. Apa- es egyedmodell osszehasonlitasa [Examination of reproduction and weaning results in Hungarian Limousin population. 2. Sire- and animal model comparison]. Allattenyesztes es Takarmanyozas. 2004 Jun;53(3):199-211. Hungarian with English abstract.
 
Lo LL, Fernando RL, Grossman M. Genetic evaluation by BLUP in two-breed terminal crossbreeding systems under dominance. J Anim Sci. 1997 Nov 1;75(11):2877-84. https://doi.org/10.2527/1997.75112877x
 
Lukaszewicz M, Davis R, Bertrand JK, Misztal I, Tsuruta S. Correlations between purebred and crossbred body weight traits in Limousin and Limousin–Angus populations. J Anim Sci. 2015 Apr;93(4):1490-3. https://doi.org/10.2527/jas.2014-8285
 
MacNeil MD, Leesburg VR, Mott TB. Validating the breeding value for maternal preweaning gain in beef cattle with measured milk production. S Afr J Anim Sci. 2006 Nov;36(5 Suppl 1): 5 p. https://doi.org/10.4314/sajas.v36i5.4071
 
Martinez RA, Dassonneville R, Bejarano D, Jimenez A, Even G, Meszaros G, Solkner J. Direct and maternal genetic effects on growth, reproduction, and ultrasound traits in zebu Brahman cattle in Colombia. J Anim Sci. 2016 Jul 1;94(7):2761-9. https://doi.org/10.2527/jas.2016-0453
 
Meyer K. DFREML. Version 3.0. User notes. Armidale (Australia): University of New England. 1998 Sep 9. 99 p.
 
Meyer K, Carrick MJ, Donelly BJP. Genetic parameters for growth traits of Australian beef cattle from a multibreed selection experiment. J Anim Sci. 1993 Oct 1;71(10):2614-22. https://doi.org/10.2527/1993.71102614x
 
Montaldo VHH, Kinghorn BP. Additive and non-additive, direct and maternal genetic effects for growth traits in a multibreed population of beef cattle. Arch Med Vet. 2003 Dec;35(2):243-8. https://doi.org/10.4067/S0301-732X2003000200013
 
Nunez-Dominguez R, Van Vleck LD, Cundiff LV. Prediction of genetic values of sires for growth traits of crossbred cattle using a multivariate animal model with heterogeneous variances. J Anim Sci. 1995 Oct 1;73(10):2940-50. https://doi.org/10.2527/1995.73102940x
 
Penasa M, Cecchinato A, Dal Zotto R, Blair HT, Lopez-Villalobos N, Bittante G. Direct and maternal genetic effects for body weight and price of calves sold for veal production. J Anim Sci. 2012 Oct 1;90(10):3385-91. https://doi.org/10.2527/jas.2011-4487
 
Roso VM, Schenkel FS, Miller SP, Wilton JW. Additive, dominance, and epistatic loss effects on preweaning weight gain of crossbred beef cattle from different Bos taurus breeds. J Anim Sci. 2005 Aug 1;83(8):1780-7. https://doi.org/10.2527/2005.8381780x
 
Splan RK, Cundiff LV, Van Vleck LD. Genetic parameters for sex-specific traits in beef cattle. J Anim Sci. 1998 Sep 1;76(9):2272-8.  https://doi.org/10.2527/1998.7692272x
 
Splan RK, Cundiff LV, Dikeman ME, Van Vleck LD. Estimates of parameters between direct and maternal genetic effects for weaning weight and direct genetic effects for carcass traits in crossbred cattle. J Anim Sci. 2002 Dec 1;80(12):3107-11.  https://doi.org/10.2527/2002.80123107x
 
Szabo F, Szabo E, Bene S. Statistic and genetic parameters of 205-day weaning weight of beef calves. Arc Tierz. 2012 Oct 10;55(6):552-61.  https://doi.org/10.5194/aab-55-552-2012
 
Szabo F, Szabo E, Bene S. Population genetic evaluation of weaning weight of different beef cattle breeds. J Cent Eur Agric. 2013 Sep 19;14(3):865-71. https://doi.org/10.5513/JCEA01/14.3.1278
 
Tilki M, Saatci M, Colak M. Genetic parameters for direct and maternal effects and estimation of breeding values for birth weight in Brown Swiss cattle. Turk J Vet Anim Sci. 2008 Jul 16;32(4):287-92.
 
Trus D, Wilton JW. Genetic parameters for maternal traits in beef cattle. Can J Anim Sci. 1988 Mar 1;68(1):119-28.  https://doi.org/10.4141/cjas88-011
 
Van Vleck LD, Hakim AF, Cundiff LV, Koch RM, Crouse JD, Boldman KG. Estimated breeding values for meat characteristics of crossbred cattle with animal model. J Anim Sci. 1992 Feb 1;70(2):363-71. https://doi.org/10.2527/1992.702363x
 
Vanderick S, Gillon A, Glorieux G, Mayeres P, Mota RR, Genglera N. Usefulness of multi-breed models in genetic evaluation of direct and maternal calving ease in Holstein and Belgian Blue Walloon purebreds and crossbreds. Livest Sci. 2017 Apr 1;198(1):129-37. https://doi.org/10.1016/j.livsci.2017.02.019
 
Willham RL. The role of maternal effects in animal breeding: III. Biometrical aspects of maternal effects in animals. J Anim Sci. 1972 Dec 1;35(6):1288-93. https://doi.org/10.2527/jas1972.3561288x
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti