Repeats as global DNA methylation marker in bovine preimplantation embryos

https://doi.org/10.17221/29/2016-CJASCitation:Li W., Van Soom A., Peelman L. (2017): Repeats as global DNA methylation marker in bovine preimplantation embryos. Czech J. Anim. Sci., 62: 43-50.
supplementary materialdownload PDF
DNA methylation undergoes dynamic changes and is a crucial part of the epigenetic regulation during mammalian early development. To determine the DNA methylation levels in bovine embryos, we applied a bisulfite sequencing based method aimed at repetitive sequences including three retrotransposons (L1_BT, BovB, and ERV1-1-I_BT) and Satellite I. A more accurate estimate of the global DNA methylation level compared to previous methods using only one repeat sequence, like Alu, could be made by calculation of the weighted arithmetic mean of multiple repetitive sequences, considering the copy number of each repetitive sequence. Satellite I and L1_BT showed significant methylation reduction at the blastocyst stage, while BovB and ERV1-1-I_BT showed no difference. The mean methylation level of the repetitive sequences during preimplantation development was the lowest at the blastocyst stage. No methylation difference was found between embryos cultured in 5% and 20% O2. Because mutations of CpGs negatively influence the calculation accuracy, we checked the mutation rate of the sequenced CpG sites. Satellite I and L1_BT showed a relatively low mutation rate (1.92 and 3.72% respectively) while that of ERV1-1-I_BT and BovB was higher (11.95 and 24% respectively). Therefore we suggest using a combination of repeats with low mutation rate, taking into account the proportion of each sequence, as a relatively quick marker for the global DNA methylation status of preimplantation stages and possibly also for other cell types.
References:
Adelson D. L., Raison J. M., Edgar R. C. (): Characterization and distribution of retrotransposons and simple sequence repeats in the bovine genome. Proceedings of the National Academy of Sciences, 106, 12855-12860 https://doi.org/10.1073/pnas.0901282106
 
Aranyi T., Varadi A., Simon I., Tusnady G.E. (2006): The BiSearch web server. BMC Bioinformatics, 7, 431–437.https://doi.org/10.1186/1471-2105-7-431
 
Aston Kenneth I., Uren Philip J., Jenkins Timothy G., Horsager Alan, Cairns Bradley R., Smith Andrew D., Carrell Douglas T. (2015): Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertility and Sterility, 104, 1388-1397.e5 https://doi.org/10.1016/j.fertnstert.2015.08.019
 
Bourc'his D, Le Bourhis D, Patin D, Niveleau A, Comizzoli P, Renard J.-P, Viegas-Péquignot E (2001): Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Current Biology, 11, 1542-1546 https://doi.org/10.1016/S0960-9822(01)00480-8
 
Couldrey Christine, Wells David N., Tian Xiuhcun (Cindy) (2013): DNA Methylation at a Bovine Alpha Satellite I Repeat CpG Site during Development following Fertilization and Somatic Cell Nuclear Transfer. PLoS ONE, 8, e55153- https://doi.org/10.1371/journal.pone.0055153
 
Dean W., Santos F., Stojkovic M., Zakhartchenko V., Walter J., Wolf E., Reik W. (2001): Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences, 98, 13734-13738 https://doi.org/10.1073/pnas.241522698
 
Dobbs Kyle B., Rodriguez Marlon, Sudano Mateus J., Ortega M. Sofia, Hansen Peter J., Knott Jason Glenn (2013): Dynamics of DNA Methylation during Early Development of the Preimplantation Bovine Embryo. PLoS ONE, 8, e66230- https://doi.org/10.1371/journal.pone.0066230
 
Farin Peter W., Piedrahita Jorge A., Farin Charlotte E. (2006): Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology, 65, 178-191 https://doi.org/10.1016/j.theriogenology.2005.09.022
 
Frommer M., McDonald L. E., Millar D. S., Collis C. M., Watt F., Grigg G. W., Molloy P. L., Paul C. L. (1992): A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands.. Proceedings of the National Academy of Sciences, 89, 1827-1831 https://doi.org/10.1073/pnas.89.5.1827
 
Fulka H., Mrazek M., Tepla O., Fulka J. (): DNA methylation pattern in human zygotes and developing embryos. Reproduction, 128, 703-708 https://doi.org/10.1530/rep.1.00217
 
Guo Hongshan, Zhu Ping, Yan Liying, Li Rong, Hu Boqiang, Lian Ying, Yan Jie, Ren Xiulian, Lin Shengli, Li Junsheng, Jin Xiaohu, Shi Xiaodan, Liu Ping, Wang Xiaoye, Wang Wei, Wei Yuan, Li Xianlong, Guo Fan, Wu Xinglong, Fan Xiaoying, Yong Jun, Wen Lu, Xie Sunney X., Tang Fuchou, Qiao Jie (): The DNA methylation landscape of human early embryos. Nature, 511, 606-610 https://doi.org/10.1038/nature13544
 
Hemberger M. (2007): Epigenetic landscape required for placental development. Cellular and Molecular Life Sciences, 64, 2422-2436 https://doi.org/10.1007/s00018-007-7113-z
 
Hou Jian, Liu Lei, Lei TingHua, Cui XiuHong, An XiaoRong, Chen YongFu (2007): Genomic DNA methylation patterns in bovine preimplantation embryos derived from in vitro fertilization. Science in China Series C: Life Sciences, 50, 56-61 https://doi.org/10.1007/s11427-007-0003-7
 
Ting Hsiung D., Marsit C. J., Houseman E. A., Eddy K., Furniss C. S., McClean M. D., Kelsey K. T. (2007): Global DNA Methylation Level in Whole Blood as a Biomarker in Head and Neck Squamous Cell Carcinoma. Cancer Epidemiology Biomarkers & Prevention, 16, 108-114 https://doi.org/10.1158/1055-9965.EPI-06-0636
 
Jurka J., Kapitonov V.V., Pavlicek A., Klonowski P., Kohany O., Walichiewicz J. (2005): Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research, 110, 462-467 https://doi.org/10.1159/000084979
 
Klose Robert J., Bird Adrian P. (2006): Genomic DNA methylation: the mark and its mediators. Trends in Biochemical Sciences, 31, 89-97 https://doi.org/10.1016/j.tibs.2005.12.008
 
Kumaki Y., Oda M., Okano M. (2008): QUMA: quantification tool for methylation analysis. Nucleic Acids Research, 36, W170-W175 https://doi.org/10.1093/nar/gkn294
 
Lander Eric S., Linton Lauren M., Birren Bruce, Nusbaum Chad, Zody Michael C., Baldwin Jennifer, Devon Keri, Dewar Ken, Doyle Michael, FitzHugh William, Funke Roel, Gage Diane, Harris Katrina, Heaford Andrew, Howland John, Kann Lisa, Lehoczky Jessica, LeVine Rosie, McEwan Paul, McKernan Kevin, Meldrim James, Mesirov Jill P., Miranda Cher, Morris William, Naylor Jerome, Raymond Christina, Rosetti Mark, Santos Ralph, Sheridan Andrew, Sougnez Carrie, Stange-Thomann Nicole, Stojanovic Nikola, Subramanian Aravind, Wyman Dudley, Rogers Jane, Sulston John, Ainscough Rachael, Beck Stephan, Bentley David, Burton John, Clee Christopher, Carter Nigel, Coulson Alan, Deadman Rebecca, Deloukas Panos, Dunham Andrew, Dunham Ian, Durbin Richard, French Lisa, Grafham Darren, Gregory Simon, Hubbard Tim, Humphray Sean, Hunt Adrienne, Jones Matthew, Lloyd Christine, McMurray Amanda, Matthews Lucy, Mercer Simon, Milne Sarah, Mullikin James C., Mungall Andrew, Plumb Robert, Ross Mark, Shownkeen Ratna, Sims Sarah, Waterston Robert H., Wilson Richard K., Hillier LaDeana W., McPherson John D., Marra Marco A., Mardis Elaine R., Fulton Lucinda A., Chinwalla Asif T., Pepin Kymberlie H., Gish Warren R., Chissoe Stephanie L., Wendl Michael C., Delehaunty Kim D., Miner Tracie L., Delehaunty Andrew, Kramer Jason B., Cook Lisa L., Fulton Robert S., Johnson Douglas L., Minx Patrick J., Clifton Sandra W., Hawkins Trevor, Branscomb Elbert, Predki Paul, Richardson Paul, Wenning Sarah, Slezak Tom, Doggett Norman, Cheng Jan-Fang, Olsen Anne, Lucas Susan, Elkin Christopher, Uberbacher Edward, Frazier Marvin, Gibbs Richard A., Muzny Donna M., Scherer Steven E., Bouck John B., Sodergren Erica J., Worley Kim C., Rives Catherine M., Gorrell James H., Metzker Michael L., Naylor Susan L., Kucherlapati Raju S., Nelson David L., Weinstock George M., Sakaki Yoshiyuki, Fujiyama Asao, Hattori Masahira, Yada Tetsushi, Toyoda Atsushi, Itoh Takehiko, Kawagoe Chiharu, Watanabe Hidemi, Totoki Yasushi, Taylor Todd, Weissenbach Jean, Heilig Roland, Saurin William, Artiguenave Francois, Brottier Philippe, Bruls Thomas, Pelletier Eric, Robert Catherine, Wincker Patrick, Rosenthal André, Platzer Matthias, Nyakatura Gerald, Taudien Stefan, Rump Andreas, Smith Douglas R., Doucette-Stamm Lynn, Rubenfield Marc, Weinstock Keith, Lee Hong Mei, Dubois JoAnn, Yang Huanming, Yu Jun, Wang Jian, Huang Guyang, Gu Jun, Hood Leroy, Rowen Lee, Madan Anup, Qin Shizen, Davis Ronald W., Federspiel Nancy A., Abola A. Pia, Proctor Michael J., Roe Bruce A., Chen Feng, Pan Huaqin, Ramser Juliane, Lehrach Hans, Reinhardt Richard, McCombie W. Richard, de la Bastide Melissa, Dedhia Neilay, Blöcker Helmut, Hornischer Klaus, Nordsiek Gabriele, Agarwala Richa, Aravind L., Bailey Jeffrey A., Bateman Alex, Batzoglou Serafim, Birney Ewan, Bork Peer, Brown Daniel G., Burge Christopher B., Cerutti Lorenzo, Chen Hsiu-Chuan, Church Deanna, Clamp Michele, Copley Richard R., Doerks Tobias, Eddy Sean R., Eichler Evan E., Furey Terrence S., Galagan James, Gilbert James G. R., Harmon Cyrus, Hayashizaki Yoshihide, Haussler David, Hermjakob Henning, Hokamp Karsten, Jang Wonhee, Johnson L. Steven, Jones Thomas A., Kasif Simon, Kaspryzk Arek, Kennedy Scot, Kent W. James, Kitts Paul, Koonin Eugene V., Korf Ian, Kulp David, Lancet Doron, Lowe Todd M., McLysaght Aoife, Mikkelsen Tarjei, Moran John V., Mulder Nicola, Pollara Victor J., Ponting Chris P., Schuler Greg, Schultz Jörg, Slater Guy, Smit Arian F. A., Stupka Elia, Szustakowki Joseph, Thierry-Mieg Danielle, Thierry-Mieg Jean, Wagner Lukas, Wallis John, Wheeler Raymond, Williams Alan, Wolf Yuri I., Wolfe Kenneth H., Yang Shiaw-Pyng, Yeh Ru-Fang, Collins Francis, Guyer Mark S., Peterson Jane, Felsenfeld Adam, Wetterstrand Kris A., Myers Richard M., Schmutz Jeremy, Dickson Mark, Grimwood Jane, Cox David R., Olson Maynard V., Kaul Rajinder, Raymond Christopher, Shimizu Nobuyoshi, Kawasaki Kazuhiko, Minoshima Shinsei, Evans Glen A., Athanasiou Maria, Schultz Roger, Patrinos Aristides, Morgan Michael J. (2001): Initial sequencing and analysis of the human genome. Nature, 409, 860-921 https://doi.org/10.1038/35057062
 
Li Y., O’Neill C. (2012): Persistence of cytosine methylation of DNA following fertilisation in the mouse. PLoS ONE, 7, e30687.
 
Li W., Goossens K., Van Poucke M., Forier K., Braeckmans K., Van Soom A., Peelman L.J. (2014): High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression. Reproduction, Fertility and Development, 28, 948–959.
 
Lisanti Sofia, Omar Wan A. W., Tomaszewski Bartłomiej, De Prins Sofie, Jacobs Griet, Koppen Gudrun, Mathers John C., Langie Sabine A. S., Brown Keith William (2013): Comparison of Methods for Quantification of Global DNA Methylation in Human Cells and Tissues. PLoS ONE, 8, e79044- https://doi.org/10.1371/journal.pone.0079044
 
Messerschmidt D. M., Knowles B. B., Solter D. (): DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes & Development, 28, 812-828 https://doi.org/10.1101/gad.234294.113
 
Newman Michelle, Blyth Benjamin J., Hussey Damian J., Jardine Daniel, Sykes Pamela J., Ormsby Rebecca J. (2012): Sensitive quantitative analysis of murine LINE1 DNA methylation using high resolution melt analysis. Epigenetics, 7, 92-105 https://doi.org/10.4161/epi.7.1.18815
 
Salilew-Wondim Dessie, Fournier Eric, Hoelker Michael, Saeed-Zidane Mohammed, Tholen Ernst, Looft Christian, Neuhoff Christiane, Besenfelder Urban, Havlicek Vita, Rings Franca, Gagné Dominic, Sirard Marc-André, Robert Claude, A. Shojaei Saadi Habib, Gad Ahmed, Schellander Karl, Tesfaye Dawit, Tian Xiuchun (Cindy) (2015): Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different Stages of Development In Vitro. PLOS ONE, 10, e0140467- https://doi.org/10.1371/journal.pone.0140467
 
SAWAI Ken, TAKAHASHI Masashi, FUJII Takashi, MORIYASU Satoru, HIRAYAMA Hiroki, MINAMIHASHI Akira, HASHIZUME Tsutomu, ONOE Sadao (2011): DNA Methylation Status of Bovine Blastocyst Embryos Obtained from Various Procedures. Journal of Reproduction and Development, 57, 236-241 https://doi.org/10.1262/jrd.10-035A
 
Schostak N., Pyatkov K., Zelentsova E., Arkhipova I., Shagin D., Shagina I., Mudrik E., Blintsov A., Clark I., Finnegan D. J., Evgen'ev M. (2008): Molecular dissection of Penelope transposable element regulatory machinery. Nucleic Acids Research, 36, 2522-2529 https://doi.org/10.1093/nar/gkm1166
 
Schulz W., Steinhoff C., Florl A. (2006): Methylation of endogenous human retroelements in health and disease. In: Doerfler W., Bohm P. (eds): DNA Methylation: Development, Genetic Disease and Cancer. Springer, Berlin Heidelberg, Germany, 211–250.
 
Smith Zachary D., Chan Michelle M., Mikkelsen Tarjei S., Gu Hongcang, Gnirke Andreas, Regev Aviv, Meissner Alexander (): A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature, 484, 339-344 https://doi.org/10.1038/nature10960
 
Wroclawska Ewa, Brant Jason O., Yang Thomas P., Moore Karen (2010): Improving Efficiencies of Locus-Specific DNA Methylation Assessment for Bovine In Vitro Produced Embryos. Systems Biology in Reproductive Medicine, 56, 96-105 https://doi.org/10.3109/19396360903331148
 
Yang A. S. (2004): A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Research, 32, 38e-38 https://doi.org/10.1093/nar/gnh032
 
Young L.E., Fernandes K., McEvoy T.G., Butterwith S.C., Gutierrez C.G., Carolan C., Broadbent P.J., Robinson J.J., Wilmut I., Sinclair K.D. (2001): Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nature Genetics, 27, 153–154.https://doi.org/10.1038/84769
 
supplementary materialdownload PDF

© 2019 Czech Academy of Agricultural Sciences