Effect of genotype, lactation and climatic factors on fatty acid profile of bovine milk


Acosta-Balcazar I.C., Quiroz-Valiente J., Granados-Zurita L., Aranda-Ibáñez E.M., Hernández-Nataren E., Rincón-Ramírez J.A., Granados-Rivera L.D. (2022): Effect of genotype, lactation and climatic factors on fatty acids profile of bovine milk. Czech J. Anim. Sci. 167-175.

download PDF

Milk fat from bovine milk contains fatty acids that may have favourable properties for human health, for example, conjugated linoleic acid (CLA) has nutraceutical activity. This research aimed to know the effects of genotype, days of lactation and climatic factors on the fatty acids (FA) profile of milk and particularly the content of CLA in milk fat. Seventeen first-calving milking cows in early lactation were used for the assessment of milk; 12 were Gyr and five were F1 (Holstein/Gyr) crosses. Sampling was carried out every 15 days, from the beginning to the end of lactation (300 days). Fatty acids were analyzed employing gas chromatography. The genotype did not influence the content of the fatty acid groups: saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA) and CLA. The highest MUFA and PUFA contents were recorded at 100 days of lactation (32.334 and 3.553 g/100 g of FA, respectively), while SFA and CLA had their highest production at 200 days of lactation (63.238 and 1.378 g/100 g of FA, respectively). Regarding the climate, the highest temperature caused a decrease in the CLA content, because temperatures above 30 °C caused a decrease in the grazing time.

Bernabucci U, Biffani S, Buggiotti S, Vitali A, Lacetera N, Nardone A. The effects of heat stress in Italian Holstein dairy cattle. J Dairy Sci. 2014 Jan 1;97(1):471-86. https://doi.org/10.3168/jds.2013-6611
Carabano MJ, Logar B, Bormann J, Minet J, Vanrobays L, Diaz C, Tychon B, Gengler N, Hammami H. Modeling heat stress under different environmental conditions. J Dairy Sci. 2016 May;99(5):3798-814. https://doi.org/10.3168/jds.2015-10212
Castro-Hernandez H, Gonzalez-Martinez F, Dominguez-Vara A, Pinos-Rodriguez JM, Morales-Almaraz E, Vieyra-Alberto R. Effect of level of concentrate on milk fatty acid profile from grazing Holstein cows. Agrociencia. 2014 Dec;48(8):765-75.
Cerutti WG, Viegas J, Barbosa AM, Oliveira RL, Dias CA, Costa ES, Nornberg JL, de Carvalho GG, Bezerra LR, Silveira AM. Fatty acid profiles of milk and Minas frescal cheese from lactating grazed cows supplemented with peanut cake. J Dairy Res. 2016 Feb;83(1):42-9. https://doi.org/10.1017/S0022029915000631
De Jesus A, Brena-Naranjo JA, Pedrozo-Acuna A, Alcocer Yamanaka VH. The use of TRMM 3B42 product for drought monitoring in Mexico. Water. 2016 Aug 2;8(8): 18 p. https://doi.org/10.3390/w8080325
FAO – Food and Agriculture Organization of the United Nations. El sector lechero mundial: Datos [Internet]. Rome: FAO 2016 [cited 2017 Sep 13]. Available from: http://www.dairydeclaration.org/Portals/153/FAO-Global-Facts-SPANISH-F.PDF?v=1. Spanish.
Feng S, Lock AL, Garnsworthy PC. A rapid lipid separation method for determining fatty acid composition of milk. J Dairy Sci. 2004 Nov 1;87(11):3785-8. https://doi.org/10.3168/jds.S0022-0302(04)73517-1
Granados-Rivera LD, Hernandez-Mendo O. Milk fat depression syndrome caused by trans-10, cis-12 isomer of conjugated linoleic acid in lactating cows. Review. Rev Mex Cien Pec. 2018 Sep 23;9(3):536-54.
Hafla AN, MacAdam JW, Soder KJ. Sustainability of US organic beef and dairy production systems: Soil, plant and cattle interactions. Sustainability. 2013 Jul 1;5(7):3009-34.  https://doi.org/10.3390/su5073009
INEGI – Instituto Nacional de Estadistica y Geografia. Información por entidad [Internet]. Mexico: INEGI 2016.[cited 2017 Aug 22]. Available from: http://www.cuentame.inegi.org.mx/monografias/informacion/tab/territorio/clima.aspx?tema=me&e=27. Spanish.
Kelly M, Berry J, Dwyer D, Griinari JM, Chouinard P, Van Amburgh M, Bauman D. Dietary fatty acid sources affect conjugated linoleic acid concentrations in milk from lactating dairy cows. J Nut. 1998 May 1;128(5):881-5. https://doi.org/10.1093/jn/128.5.881
Lindmark Mansson H. Fatty acids in bovine milk fat. Food Nut Res. 2008 Jun 10;52(1): 3 p. https://doi.org/10.3402/fnr.v52i0.1821
Lopez R, Garcia JG, Islas A, Ramirez R, Ruiz A, Ponce I, Lopez R. Relationship between 9-cis, 11-trans and 10-trans, 12-cis conjugated linoleic acid isomers and milk yield in Holstein-Friesian cows. Review. Rev Mex Cien Pec. 2013 Sep;4(3):339-60.
Martinez A, Perez M, Perez L, Carrion D, Gomez G, Garzon A. Effect of oils and seeds in ruminant diets on milk fat fatty acid profile. Review. Rev Mex Cien Pec. 2013 Aug 13;4(3):319-38.
Martinez-Borraz A, Moya-Camarena SY, Gonzalez-Rios H, Hernandez J, Pinelli-Saavedra A. Conjugated linoleic acid (CLA) content in milk from confined Holstein cows during summer months in northwestern Mexico. Rev Mex Cien Pec. 2010 Sep;1(3):221-35.
Ortega-Perez R, Espinoza-Villavicencio JL, Palacios-Mechetnov E, Palacios-Espinosa A, Arjona-Lopez O, Murillo-Amador B, Rivera-Acuna F. Fatty acids profile in milk of Chinampo cows (Bos taurus) fed fresh forage from sarcocaulescent shrubs or alfalfa hay. Arch Med Vet. 2013 Oct 12;45(1):45-51. https://doi.org/10.4067/S0301-732X2013000100008
Prieto-Manrrique E, Vargas-Sanchez J, Angulo-Arizada J, Mahecha-Ledesma L. Grasa y acidos grasos en leche de vacas pastoreando, en cuatro sistemas de produccion. Agron Mesoam. 2017 Apr;28(1):19-42. Spanish. https://doi.org/10.15517/am.v28i1.22816
Renno FP, Freitas JE Jr, Gandra JR, Verdurico LC, Santos MV, Barletta RV, Venturelli BC, Vilela FG. Fatty acid profile and composition of milk protein fraction in dairy cows fed long-chain unsaturated fatty acids during the transition period. Rev Bras Zoot. 2013 Nov;42(11):813-23. https://doi.org/10.1590/S1516-35982013001100008
Roca-Fernandez AI, Gonzalez-Rodriguez A, Vazquez-Yanez OP, Fernandez-Casado JA. Effect of forage source (grazing vs. silage) on conjugated linoleic acid content in milk fat of Holstein-Friesian dairy cows from Galicia (NW Spain). Span J Agric Res. 2012 Jan 18;10(1):116-22. https://doi.org/10.5424/sjar/2012101-127-11
Roman-Ponce S, Ruiz-Lopez FJ, Montaldo H, Rizzi R, Roman-Ponce H. Effects of crossbreeding on milk production and growth characteristics in dual-purpose cattle in the humid tropics. Rev Mex Cien Pec. 2013 Jan 10;4(4):405-16.
Santana ML, Pereira J, Bignard B, Vercesi AE, Menendez-Buxadera A, El Faro L. Detrimental effect of selection for milk yield on genetic tolerance to heat stress in purebred Zebu cattle: Genetic parameters and trends. J Dairy Scie. 2015 Dec 1;98(12):9035-43. https://doi.org/10.3168/jds.2015-9817
Tolentino R, Leon S, Perez M, Herrera M, Ayala A, Gonzalez J, Bermudez B, Salinas R, Francisca M, Martinez J. Composition of triacylglycerols in fats of cow and goat milk produced in four zones of mexico. Food Sci Nutr. 2015 Apr;6(6):555-61. https://doi.org/10.4236/fns.2015.66058
Welter KC, Martins CMMR, de Palma ASV, Martins MM, dos Reis BR, Schmidt BLU, Netto AS. Canola oil in lactating dairy cow diets reduces milk saturated fatty acids and improves its omega-3 and oleic fatty acid content. PLoS One. 2016 Mar 25;11(3): 16 p. https://doi.org/10.1371/journal.pone.0151876
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti