Effect of dietary lupin (Lupinus albus) on the gastrointestinal microbiota composition in broiler chickens and ducks

https://doi.org/10.17221/42/2017-CJASCitation:Geigerová M., Švejstil R., Skřivanová E., Straková E., Suchý P. (2017): Effect of dietary lupin (Lupinus albus) on the gastrointestinal microbiota composition in broiler chickens and ducks. Czech J. Anim. Sci., 62: 369-376.
download PDF
The purpose of the study was to evaluate the amount of raffinose-series oligosaccharides (RSO) in soybean meal (SBM), whole white lupin seed meal (WLM), sunflower meal (SFM), and rapeseed oil meal (ROM) and to determine whether partial or complete dietary WLM replacement affected the numbers of bacteria in selected groups in the microbiota of broiler chickens and ducks without inducing any weight loss. Total counts of anaerobes, lactobacilli, bifidobacteria, and Escherichia coli in caecal samples from both ducks and broiler chickens, as well as in a crop chyme, in broiler chickens, were determined. Live weights before slaughter were determined. Both broiler chickens and ducks were fed a control diet with SBM (L0) or diet containing 50% or 100% WLM as a substitute for SBM (groups L50 and L100, respectively). In comparison with SBM, WLM contained significantly higher amounts of RSO, and the amounts of oligosaccharides in SFM (1.73 ± 0.26 g/100 g) and ROM (1.79 ± 0.14 g/100 g) were negligible compared to those in WLM (8.26 ± 0.14 g/100 g) and SBM (6.96 ± 0.21 g/100 g). The inclusion of lupin in chicken diets did not significantly affect the monitored bacterial groups in crop chyme, but a complete replacement of SBM with WLM (L100 group) in chicken diets significantly (P ≤ 0.05) increased the counts of lactobacilli in caecal samples. Partial (L50 group) and complete (L100 group) lupin supplementation in the duck diet significantly (P ≤ 0.05) increased counts of lactobacilli and bifidobacteria by at least one order of magnitude. E. coli counts in poultry were not affected by changes in diet. The results of our study indicate that partial dietary replacement of SBM with WLM did not significantly affect the live weight of broiler chickens and ducks, but that complete replacement of SBM with WLM may lead to weight loss.
References:
Andersen Keld Ejdrup, Bjergegaard Charlotte, Møller Peter, Sørensen Jens Christian, Sørensen Hilmer (2005): Compositional Variations for α-Galactosides in Different Species of Leguminosae, Brassicaceae, and Barley:  A Chemotaxonomic Study Based on Chemometrics and High-Performance Capillary Electrophoresis. Journal of Agricultural and Food Chemistry, 53, 5809-5817  https://doi.org/10.1021/jf040471v
 
Bucław M. (2016): The use of inulin in poultry feeding: a review. Journal of Animal Physiology and Animal Nutrition, 100, 1015-1022  https://doi.org/10.1111/jpn.12484
 
Chaudhary Juhi, Patil Gunvant B., Sonah Humira, Deshmukh Rupesh K., Vuong Tri D., Valliyodan Babu, Nguyen Henry T. (2015): Expanding Omics Resources for Improvement of Soybean Seed Composition Traits. Frontiers in Plant Science, 6, -  https://doi.org/10.3389/fpls.2015.01021
 
Dadalt J.C., E. Velayudhan D., Neto M.A.Trindade, Slominski B.A., Nyachoti C.M. (2016): Ileal amino acid digestibility in high protein sunflower meal and pea protein isolate fed to growing pigs with or without multi-carbohydrase supplementation. Animal Feed Science and Technology, 221, 62-69  https://doi.org/10.1016/j.anifeedsci.2016.08.015
 
Frewer Lynn J., van der Lans Ivo A., Fischer Arnout R.H., Reinders Machiel J., Menozzi Davide, Zhang Xiaoyong, van den Berg Isabelle, Zimmermann Karin L. (2013): Public perceptions of agri-food applications of genetic modification – A systematic review and meta-analysis. Trends in Food Science & Technology, 30, 142-152  https://doi.org/10.1016/j.tifs.2013.01.003
 
Froidmont E., Wathelet B., Oger R., Romnée J. M., Colinet A., Cloet D., Didelez M., Pichon J. C., Boudry C., Jean G., Bartiaux-Thill N. (2009): Nutritional properties of potato protein concentrate compared with soybean meal as the main protein source in feed for the double-muscled Belgian Blue bull. animal, 3, 200-208  https://doi.org/10.1017/S1751731108003200
 
Guillon F., Champ M. M.-J. (2002): Carbohydrate fractions of legumes: uses in human nutrition and potential for health. British Journal of Nutrition, 88, 293-  https://doi.org/10.1079/BJN2002720
 
Heger J., Wiltafsky M., Zelenka J. (2016): Impact of dıfferent processıng of full-fat soybeans on broiler performance. Czech Journal of Animal Science, 61, 57-66  https://doi.org/10.17221/8728-CJAS
 
Hernández A.J., Roman D. (2016): Phosphorus and nitrogen utilization efficiency in rainbow trout (Oncorhynchus mykiss) fed diets with lupin (Lupinus albus) or soybean (Glycine max) meals as partial replacements to fish meal. Czech Journal of Animal Science, 61, 67-74  https://doi.org/10.17221/8729-CJAS
 
Hernandez-Hernandez Oswaldo, Côté Gregory L., Kolida Sofia, Rastall Robert A., Sanz M. Luz (2011): In Vitro Fermentation of Alternansucrase Raffinose-Derived Oligosaccharides by Human Gut Bacteria. Journal of Agricultural and Food Chemistry, 59, 10901-10906  https://doi.org/10.1021/jf202466s
 
Józefiak D, Rutkowski A, Martin S.A (2004): Carbohydrate fermentation in the avian ceca: a review. Animal Feed Science and Technology, 113, 1-15  https://doi.org/10.1016/j.anifeedsci.2003.09.007
 
Kierończyk Bartosz, Rawski Mateusz, Długosz Jakub, Świątkiewicz Sylwester, Józefiak Damian (2016): Avian Crop Function – A Review. Annals of Animal Science, 16, -  https://doi.org/10.1515/aoas-2016-0032
 
Kumar Vineet, Rani Anita, Goyal Lokesh, Dixit Amit Kumar, Manjaya J. G., Dev Jai, Swamy M. (2010): Sucrose and Raffinose Family Oligosaccharides (RFOs) in Soybean Seeds As Influenced by Genotype and Growing Location. Journal of Agricultural and Food Chemistry, 58, 5081-5085  https://doi.org/10.1021/jf903141s
 
Lan Y., Williams B.A., Verstegen M.W.A., Patterson R., Tamminga S. (2007): Soy oligosaccharides in vitro fermentation characteristics and its effect on caecal microorganisms of young broiler chickens. Animal Feed Science and Technology, 133, 286-297  https://doi.org/10.1016/j.anifeedsci.2006.04.011
 
Liermann Wendy, Berk Andreas, Böschen Verena, Dänicke Sven (2016): Effects of diets differing in protein source and technical treatment on digestibility, performance and visceral and biochemical parameters of fattening pigs. Archives of Animal Nutrition, 70, 190-208  https://doi.org/10.1080/1745039X.2016.1157983
 
Martı́nez-Villaluenga Cristina, Frı́as Juana, Vidal-Valverde Concepción (2005): Raffinose family oligosaccharides and sucrose contents in 13 Spanish lupin cultivars. Food Chemistry, 91, 645-649  https://doi.org/10.1016/j.foodchem.2004.06.034
 
Olkowski B. I., Classen H. L., Wojnarowicz C., Olkowski A. A. (2005): Feeding high levels of lupine seeds to broiler chickens: plasma micronutrient status in the context of digesta viscosity and morphometric and ultrastructural changes in the gastrointestinal tract. Poultry Science, 84, 1707-1715  https://doi.org/10.1093/ps/84.11.1707
 
Patterson J., Burkholder K. (2003): Application of prebiotics and probiotics in poultry production. Poultry Science, 82, 627-631  https://doi.org/10.1093/ps/82.4.627
 
Petr J., Rada V. (2001): Bifidobacteria are Obligate Inhabitants of the Crop of Adult Laying Hens. Journal of Veterinary Medicine Series B, 48, 227-233  https://doi.org/10.1046/j.1439-0450.2001.00447.x
 
Rada V, Petr J (2000): A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. Journal of Microbiological Methods, 43, 127-132  https://doi.org/10.1016/S0167-7012(00)00205-0
 
Saini HS, Gladstones JS (1986): Variability in the total and component galactosyl sucrose oligosaccharides of Lupinus species. Australian Journal of Agricultural Research, 37, 157-  https://doi.org/10.1071/AR9860157
 
Smulikowska S., Konieczka P., Czerwinski J., Mieczkowska A., Jankowiak J. (2014): Feeding broiler chickens with practical diets containing lupin seeds (<i>L. angustifolius</i> or <i>L. luteus</i>): effects of incorporation level and mannanase supplementation on growth performance, digesta viscosity, microbial fermentation and gut morphology. Journal of Animal and Feed Sciences, 23, 64-72  https://doi.org/10.22358/jafs/65718/2014
 
Švejstil R., Musilová Š., Rada V. (2015): Raffinose-Series Oligosaccharides in Soybean Products. Scientia Agriculturae Bohemica, 46, -  https://doi.org/10.1515/sab-2015-0019
 
Volek Z., Marounek M. (2009): Whole white lupin (Lupinus albus cv. Amiga) seeds as a source of protein for growing-fattening rabbits. Animal Feed Science and Technology, 152, 322-329  https://doi.org/10.1016/j.anifeedsci.2009.05.003
 
Wiltafsky M. K., Bartelt J., Relandeau C., Roth F. X. (2009): Estimation of the optimum ratio of standardized ileal digestible isoleucine to lysine for eight- to twenty-five-kilogram pigs in diets containing spray-dried blood cells or corn gluten feed as a protein source. Journal of Animal Science, 87, 2554-2564  https://doi.org/10.2527/jas.2008-1320
 
Wongputtisin Pairote, Ramaraj Rameshprabu, Unpaprom Yuwalee, Kawaree Rungthip, Pongtrakul Nongkran (2015): Raffinose family oligosaccharides in seed of Glycine max cv. Chiang Mai60 and potential source of prebiotic substances. International Journal of Food Science & Technology, 50, 1750-1756  https://doi.org/10.1111/ijfs.12842
 
Wu Y. B., Ravindran V., Thomas D. G., Birtles M. J., Hendriks W. H. (2004): Influence of method of whole wheat inclusion and xylanase supplementation on the performance, apparent metabolisable energy, digestive tract measurements and gut morphology of broilers. British Poultry Science, 45, 385-394  https://doi.org/10.1080/00071660410001730888
 
Zdunczyk Z., Jankowski J., Rutkowski A., Sosnowska E., Drazbo A., Zdunczyk P., Juskiewicz J. (2014): The composition and enzymatic activity of gut microbiota in laying hens fed diets supplemented with blue lupine seeds. Animal Feed Science and Technology, 191, 57-66  https://doi.org/10.1016/j.anifeedsci.2014.01.016
 
Zdunczyk Z., Krawczyk M., Mikulski D., Jankowski J., Przybylska-Gornowicz B., Juskiewicz J. (2016): Beneficial effects of increasing dietary levels of yellow lupine (Lupinus luteus) seed meal on productivity parameters and gastrointestinal tract physiology in eight-week-old turkeys. Animal Feed Science and Technology, 211, 189-198  https://doi.org/10.1016/j.anifeedsci.2015.11.015
 
Zraly Z., Pisarikova B., Trckova M., Dolezal M., Thiemel J., Simeonovova J., Juzl M. (2008): Replacement of soya in pig diets with white lupine cv. Butan. Czech Journal of Animal Science, 53, 418–430.
 
Zwoliński Cezary, Gugołek Andrzej, Strychalski Janusz, Kowalska Dorota, Chwastowska-Siwiecka Iwona, Konstantynowicz Małgorzata (2016): The effect of substitution of soybean meal with a mixture of rapeseed meal, white lupin grain, and pea grain on performance indicators, nutrient digestibility, and nitrogen retention in Popielno White rabbits. Journal of Applied Animal Research, 45, 570-576  https://doi.org/10.1080/09712119.2016.1233107
 
download PDF

© 2020 Czech Academy of Agricultural Sciences