Marine by-products and insects as a potential chitosan source for ruminant feed additives

https://doi.org/10.17221/42/2022-CJASCitation:

Anggraeni A.S., Jayanegara A., Laconi E.B., Kumalasari N.R., Sofyan A. (2022): Marine by-products and insects as a potential chitosan source for ruminant feed additives. Czech J. Anim. Sci., 67: 295–317.

download PDF

Chitosan is a hydrophilic polysaccharide produced from chitin that has a wide range of applications. Chitosan has several functions as an anti-microbial, methane reducer, and protein protective agent. Based on this function chitosan has been explored for its potential as a feed additive. Moreover, source and extraction technique have potentially affected the yield and degree of deacetylation (DD) of chitosan products. The present review provides information on various chitosan isolation processes in marine by-products and insects and the result of their DD and yield. Chemical isolation processes are still popular in industries compared with biological processes based on their DD and yield. Chitosan properties and yield from insects are comparable with those of commercial chitosan derived from a marine by-product. The application of chitosan as a feed additive is also highlighted in this review. Moreover, chitosan as a feed additive has the capability to decrease CH4 production, increase propionate production, reduce the acetate/propionate ratio, and improve nutrient utilization efficiency, and animal performance. Chitosan has the potential to be a beneficial natural and plentiful feed additive, particularly for reducing enteric methane emissions.

References:
Abidin ZNA, Kormin F, Abidin ZNA, Anuar MNAF, Bakar AMF. The potential of insects as alternative sources of chitin: An overview on the chemical method of extraction from various sources. Int J Mol Sci. 2020 Jul 15;21(14): 25 p.
 
Alali WQ, Ricke SC. The ecology and control of bacterial pathogens in animal feed. In: Fink-Gremmels J, editor. Animal feed contamination: Effects on livestock and food safety. Cambridge: Woodhead Publishing Ltd; 2012. p. 35-55.
 
Allegretti G, Talamini E, Schmidt V, Bogorni PC, Ortega E. Insect as feed: An emergy assessment of insect meal as a sustainable protein source for the Brazilian poultry industry. J Clean Prod. 2018 Jan 10;171:403-12. https://doi.org/10.1016/j.jclepro.2017.09.244
 
Araujo APC, Venturelli BC, Santos MCB, Gardinal R, Consolo NRB, Calomeni GD, Freitas JE, Barletta RV, Gandra JR, Paiva PG, Renno FP. Chitosan affects total nutrient digestion and ruminal fermentation in Nellore steers. Anim Feed Sci Technol. 2015 Aug 1;206:114-8. https://doi.org/10.1016/j.anifeedsci.2015.05.016
 
Arbia W, Arbia L, Adour L, Amrane A. Chitin recovery using biological methods. Food Technol Biotechnol. 2013 Apr;51(1):12-25.
 
Beaney P, Lizardi-Mendoza J, Healy M. Comparison of chitins produced by chemical and bioprocessing methods. J Chem Technol Biotechnol. 2005 Oct 12;80(2):145-50. https://doi.org/10.1002/jctb.1164
 
Belanche A, Pinloche E, Preskett D, Newbold CJ. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol Ecol. 2016 Jan 1;92(1): 13 p. https://doi.org/10.1093/femsec/fiv160
 
Brock FM, Forsberg CW, Buchanan-Smith JG. Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl Environ Microbiol. 1982 Sep;44(3):561-9. https://doi.org/10.1128/aem.44.3.561-569.1982
 
Casadidio C, Peregrina DV, Gigliobianco MR, Deng S, Censi R, Martino PD. Chitin and chitosans: Characteristics, eco-friendly processes, and applications in cosmetic science. Mar Drugs. 2019 Jun 21;17(6): 30 p. https://doi.org/10.3390/md17060369
 
Cheng J, Zhu H, Huang J, Zhao J, Yan B, Ma S, Zhang H, Fan D. The physicochemical properties of chitosan prepared by microwave heating. Food Sci Nutr. 2020 Mar 2;8(4):1987-94.  https://doi.org/10.1002/fsn3.1486
 
Chiang YW, Wang TH, Lee WC. Chitosan coating for the protection of amino acids that were entrapped within hydrogenated fat. Food Hydrocoll. 2009 May 1;23(3):1057-61.  https://doi.org/10.1016/j.foodhyd.2008.04.007
 
Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JC, Lin JG. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin. 2004 Jul;25(7):932-6.
 
da Silva Magalhaes T, Santos EM, de Freitas Junior JE, Santos SA, Dos Santos Pina D, Cirne LGA, Pinto LFB, Mourao GB, Dos Santos Soares FD, Leite LC, Ruiz Alba HD, Tosto MSL, Carvalho GGP. Chitosan and cottonseed processing method association on carcass traits and meat quality of feedlot lambs. PLoS One. 2020 Nov 23;15(11): 15 p. https://doi.org/10.1371/journal.pone.0242822
 
de Oliveira EB, Cunha F, Daetz R, Figueiredo CC, Chebel RC, Santos JE, Risco CA, Jeong KC, Machado VS, Galvao KN. Using chitosan microparticles to treat metritis in lactating dairy cows. J Dairy Sci. 2020 Aug;103(8):7377-91. https://doi.org/10.3168/jds.2019-18028
 
de Paiva PG, Ferreira De Jesus E, Del Valle TA, Ferreira De Almeida G, Costa AGBVB, Consentini CEC, Zanferari F, Takiya CS, Bueno ICDS, Renno FP. Effects of chitosan on ruminal fermentation, nutrient digestibility, and milk yield and composition of dairy cows. Anim Prod Sci. 2016 Feb 18;57(2):301-7.  https://doi.org/10.1071/AN15329
 
de Queiroz Antonino RS, Lia Fook BR, de Oliveira Lima VA, de Farias Rached RI, Lima EP, da Silva Lima RJ, Peniche Covas CA, Lia Fook MV. Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar Drugs. 2017 May 15;15(5): 12 p. https://doi.org/10.3390/md15050141
 
Del Valle TA, de Paiva PG, de Jesus EF, de Almeida GF, Zanferari F, Costa AG, Bueno IC, Renno FP. Dietary chitosan improves nitrogen use and feed conversion in diets for mid-lactation dairy cows. Livest Sci. 2017 Jul 1;201:22-9. https://doi.org/10.1016/j.livsci.2017.04.003
 
Del Valle TA, Antonio TFZG, Gandra MCJR. Effect of chitosan on the preservation quality of sugarcane silage. Grass Forage Sci. 2018 Apr 2;73(3):630-8. https://doi.org/10.1111/gfs.12356
 
Del Valle TA, Antonio G, de Castro Zilio EM, da Silva Dias MS, Gandra JR, de Castro FA, Campana M, de Morais JP. Chitosan level effects on fermentation profile and chemical composition of sugarcane silage. Braz J Vet Res Anim Sci. 2020 Oct 6;57(3): 7 p. https://doi.org/10.11606/issn.1678-4456.bjvras.2020.162942
 
Dhillon GS, Kaur S, Brar SK, Verma M. Green synthesis approach: Extraction of chitosan from fungus mycelia. Crit Rev Biotechnol. 2013 Dec;33(4):379-403.  https://doi.org/10.3109/07388551.2012.717217
 
Dias AOC, Goes RHTB, Gandra JR, Takiya CS, Branco AF, Jacauna AG, Oliveira RT, Souza CJS, Vaz MSM. Increasing doses of chitosan to grazing beef steers: Nutrient intake and digestibility, ruminal fermentation, and nitrogen utilization. Anim Feed Sci Technol. 2017 Mar 1;225:73-80.  https://doi.org/10.1016/j.anifeedsci.2017.01.015
 
Dias LSB, Silva DS, Carvalho GGP, Araujo MLGML, Silva FFD, Pereira MLA, Gandra JR, Lima VGO, Santos ACSD, Bulcao LFA, Leite VM, Freitas JE Jr. Chitosan associated with whole raw soybean in diets for Murrah buffaloes on ruminal fermentation, apparent digestibility and nutrients metabolism. Anim Sci J. 2020 Jan;91(1): e13435.  https://doi.org/10.1111/asj.13435
 
Dicke M. Insects as feed and the sustainable development goals. J Insects Food Feed. 2018 Aug 30;4(3):147-56. https://doi.org/10.3920/JIFF2018.0003
 
Duffy C, O’Riordan D, O’Sullivan M, Jacquier JC. In vitro evaluation of chitosan copper chelate gels as a multimicronutrient feed additive for cattle. J Sci Food Agric. 2018 Aug;98(11):4177-83.  https://doi.org/10.1002/jsfa.8939
 
El Knidri H, El Khalfaouy R, Laajeb A, Addaou A, Lahsini A. Eco-friendly extraction and characterization of chitin and chitosan from the shrimp shell waste via microwave irradiation. Process Saf Environ Prot. 2016 Nov 1;104:395-405. https://doi.org/10.1016/j.psep.2016.09.020
 
El Knidri H, Belaabed R, Addaou A, Laajeb A, Lahsini A. Extraction, chemical modification and characterization of chitin and chitosan. Int J Biol Macromol. 2018 Dec;120(Pt A):1181-9.  https://doi.org/10.1016/j.ijbiomac.2018.08.139
 
Emadi F, Amini A, Gholami A, Ghasemi Y. Functionalized graphene oxide with chitosan for protein nanocarriers to protect against enzymatic cleavage and retain collagenase activity. Sci Rep. 2017 Feb 10;7(1): 13 p.  https://doi.org/10.1038/srep42258
 
Fadel El-Seed ANMA, Kamel HEM, Sekine J, Hishinuma M, Hamana K. Chitin and chitosan as possible novel nitrogen sources for ruminants. Can J Anim Sci. 2003 Mar 1;83(1):161-3. https://doi.org/10.4141/A02-063
 
Gandra JR, Oliveira ER, Takiya CS, Goes RHTB, Paiva PG, Oliveira KMP, Gandra ERS, Orbach ND, Haraki HMC. Chitosan improves the chemical composition, microbiological quality, and aerobic stability of sugarcane silage. Anim Feed Sci Technol. 2016 Apr 1;214:44-52.
 
Gandra JR, Takiya CS, Del Valle TA, Oliveira ER, de Goes RHTB, Gandra ERS, Batista JDO, Araki HMC. Soybean whole-plant ensiled with chitosan and lactic acid bacteria: Microorganism counts, fermentative profile, and total losses. J Dairy Sci. 2018 Sep 1;101(9):7871-80.  https://doi.org/10.3168/jds.2017-14268
 
Getabalew M, Alemneh T, Zewdie D. Types and uses of growth promoters in beef cattle. J Vet Med Sci. 2020 Jul 22;3(1): 5 p.
 
Goiri I, Garcia-Rodriguez A, Oregui LM. Effect of chitosan on mixed ruminal microorganism fermentation using the rumen simulation technique (Rusitec). Anim Feed Sci Technol. 2009 Jun;152(1-2):92-102.
 
Goiri I, Oregui LM, Garcia-Rodriguez A. Use of chitosans to modulate ruminal fermentation of a 50:50 forage-to-concentrate diet in sheep. J Anim Sci. 2010 Feb 1;88(2):749-55.  https://doi.org/10.2527/jas.2009-2377
 
Goy RC, De Britto D, Assis OBG. A review of the antimicrobial activity of chitosan. Polimeros. 2009 Jan;19(3):241-7.
 
Goy RC, Morais STB, Assis OBG. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev Bras Farmacogn. 2016 Jan;26(1):122-7.
 
Hahn T, Tafi E, Paul A, Salvia R, Falabella P, Zibek S. Current state of chitin purification and chitosan production from insects. J Chem Technol Biotechnol. 2020 Jul 10;95(11):2775-95. https://doi.org/10.1002/jctb.6533
 
Hajji S, Younes I, Ghorbel-Bellaaj O, Hajji R, Rinaudo M, Nasri M, Jellouli K. Structural differences between chitin and chitosan extracted from three different marine sources. Int J Biol Macromol. 2014 Apr 1;65:298-306.  https://doi.org/10.1016/j.ijbiomac.2014.01.045
 
Hao Y, Guo C, Gong Y, Sun X, Wang W, Wang Y, Yang H, Cao Z, Li S. Rumen fermentation, digestive enzyme activity, and bacteria composition between pre-weaning and post-weaning dairy calves. Animals (Basel). 2021a Aug 28;11(9): 13 p.  https://doi.org/10.3390/ani11092527
 
Hao G, Hu Y, Shi L, Chen J, Cui A, Weng W, Osako K. Physicochemical characteristics of chitosan from swimming crab (Portunus trituberculatus) shells prepared by subcritical water pretreatment. Sci Rep. 2021b Jan 18;11(1): 9 p.
 
Harahap RP, Setiawan D, Nahrowib S, Suharti S, Obitsud T, Jayanegara A. Enteric methane emissions and rumen fermentation profile treated by dietary chitosan: A meta-analysis of in vitro experiments. Trop Anim Sci J. 2020 Sep;43(3):233-9.
 
Hart EH, Creevey CJ, Hitch T, Kingston-Smith AH. Meta-proteomics of rumen microbiota indicates niche compartmentalisation and functional dominance in a limited number of metabolic pathways between abundant bacteria. Sci Rep. 2018 Jul 12;8(1): 11 p.  https://doi.org/10.1038/s41598-018-28827-7
 
Hirano S, Itakura C, Seino H, Akiyama Y, Nonaka I, Kanbara N, Kawakami T. Chitosan as an ingredient for domestic animal feeds. J Agric Food Chem. 1990 May 1;38(5):1214-7.
 
Ibitoye EB, Lokman IH, Hezmee MNM, Goh YM, Zuki ABZ, Jimoh AA. Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomed Mater. 2018 Jan 29;13(2): 12 p.
 
Jacauna AG, de Goes RHTEB, Seno LO, Itavo LCV, Gandra JR, da Silva NG, Anschau DG, de Oliveira RT, Bezerra LR, Oliveira RL. Degradability, in vitro fermentation parameters, and kinetic degradation of diets with increasing levels of forage and chitosan. Transl Anim Sci. 2021 May 13;5(3): 12 p.
 
Jarolimkova V. Preparation and characterization of antimicrobial packaging films from cricket chitosan enriched with schisandra chinensis extract [master’s thesis]. Lund: Lund University; 2015.
 
Jayanegara A, Sholikin MM, Sabila DAN, Suharti S, Astuti DA. Lowering chitin content of cricket (Gryllus assimilis) through exoskeleton removal and chemical extraction and its utilization as a ruminant feed in vitro. Pak J Biol Sci. 2017 Dec 27;20(10):523-9. https://doi.org/10.3923/pjbs.2017.523.529
 
Jeon SJ, Oh M, Yeo WS, Galvao KN, Jeong KC. Underlying mechanism of antimicrobial activity of chitosan microparticles and implications for the treatment of infectious diseases. PLoS One. 2014 Mar 21;9(3): 10 p.
 
Jeong HS, Kang D, Woon ML, Kang CS, Sung HJ. Risk assessment of growth hormones and antimicrobial residues in meat. Toxicol Res. 2010 Dec;26(4):301-13.
 
Jimenez-Ocampo R, Valencia-Salazar S, Pinzon-Diaz CE, Herrera-Torres E, Aguilar-Perez CF, Arango J, Ku-Vera JC. The role of chitosan as a possible agent for enteric methane mitigation in ruminants. Animals (Basel). 2019 Nov 9;9(11): 12 p. https://doi.org/10.3390/ani9110942
 
Jimenez-Ocampo R, Montoya-Flores MD, Herrera-Torres E, Pamanes-Carrasco G, Arceo-Castillo JI, Valencia-Salazar SS, Arango J, Aguilar-Perez CF, Ramwirez-Aviles L, Solorio-Sanchez FJ, Pineiro-Vazquez AT, Ku-Vera JC. Effect of chitosan and naringin on enteric methane emissions in crossbred heifers fed tropical grass. Animals. 2021 May 28;11(6):1-15. https://doi.org/10.3390/ani11061599
 
Kaya M, Baran T, Erdogan S, Mentes A, Ozusaglam MA, Cakmak YS. Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata). Mater Sci Eng C Mater Biol Appl. 2014a Dec 1;45:72-81.  https://doi.org/10.1016/j.msec.2014.09.004
 
Kaya M, Baran T, Mentes A, Asaroglu M, Sezen G, Tozak KO. Extraction and characterization of α-chitin and chitosan from six different aquatic invertebrates. Food Biophys. 2014b Jun;9(2):145-57. https://doi.org/10.1007/s11483-013-9327-y
 
Kaya M, Bitim B, Mujtaba M, Koyuncu T. Surface morphology of chitin highly related with the isolated body part of butterfly (Argynnis pandora). Int J Biol Macromol. 2015a Nov;81:443-9.  https://doi.org/10.1016/j.ijbiomac.2015.08.021
 
Kaya M, Baran T, Karaarslan M. A new method for fast chitin extraction from shells of crab, crayfish and shrimp. Nat Prod Res. 2015b Apr;29(15):1477-80.
 
Kaya M, Lelesius E, Nagrockaite R, Sargin I, Arslan G, Mol A, Baran T, Can E, Bitim B. Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species. PLoS One. 2015c Jan 30;10(1): 14 p.  https://doi.org/10.1371/journal.pone.0115531
 
Kirwan SF, Pierce KM, Serra E, McDonald M, Rajauria G, Boland TM. Effect of chitosan inclusion and dietary crude protein level on nutrient intake and digestibility, ruminal fermentation, and N excretion in beef heifers offered a grass silage based diet. Animals (Basel). 2021 Mar 10;11(3): 13 p.  https://doi.org/10.3390/ani11030771
 
Kofuji K, Murata Y, Kawashima S. Sustained insulin release with biodegradation of chitosan gel beads prepared by copper ions. Int J Pharm. 2005 Oct 13;303(1-2):95-103. https://doi.org/10.1016/j.ijpharm.2005.07.011
 
Kumari S, Kumar ASH, Abanti S, Kumar RP. Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int J Biol Macromol. 2017 Nov;104(Pt B):1697-705.  https://doi.org/10.1016/j.ijbiomac.2017.04.119
 
Kung L Jr, Shaver RD, Grant RJ, Schmidt RJ. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J Dairy Sci. 2018 May 1;101(5):4020-33.  https://doi.org/10.3168/jds.2017-13909
 
Liu S, Sun J, Yu L, Zhang C, Bi J, Zhu F, Qu M, Jiang C, Yang Q. Extraction and characterization of chitin from the beetle Holotrichia parallela Motschulsky. Molecules. 2012 Apr 17;17(4):4604-11.
 
Luo Q, Wang Y, Han Q, Ji L, Zhang H, Fei Z, Wang Y. Comparison of the physicochemical, rheological, and morphologic properties of chitosan from four insects. Carbohydr Polym. 2019 Apr 1;209:266-75.  https://doi.org/10.1016/j.carbpol.2019.01.030
 
Marei NH, El-Samie EA, Salah T, Saad GR, Elwahy AH. Isolation and characterization of chitosan from different local insects in Egypt. Int J Biol Macromol. 2016 Jan;82:871-7.
 
McDonald P, Henderson AR, Heron SJE. The biochemistry of silage. 2nd ed. Marlow: Chalcombe Publications; 1991. 340 p.
 
Mohan K, Ganesan AR, Muralisankar T, Jayakumar R, Sathishkumar P, Uthayakumar V, Chandirasekar R, Revathi N. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci Technol. 2020 Nov;105:17-42.  https://doi.org/10.1016/j.tifs.2020.08.016
 
Mohyuddin SG, Qamar A, Hu CY, Chen SW, Wen JY, Liu XX, Ma XB, Yu ZC, Yong YH, Wu LY, Bao ML, Ju XH. Effect of chitosan on blood profile, inflammatory cytokines by activating TLR4/NF-κB signaling pathway in intestine of heat stressed mice. Sci Rep. 2021 Oct 18;11(1): 13 p.  https://doi.org/10.1038/s41598-021-98931-8
 
Mushawwir A, Arifin J, Darwis D, Puspitasari T, Pengerteni DS, Nuryanthi N, Perman R. Liver metabolic activities of Pasundan cattle induced by irradiated chitosan. Biodiversitas. 2020 Dec;21(12):5571-78.
 
No HK, Park NY, Lee SH, Meyers SP. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol. 2002 Mar 25;74(1-2):65-72.  https://doi.org/10.1016/S0168-1605(01)00717-6
 
Okawa H, Wijayagunawardane MMP, Vos PLAM, Yamato O, Taniguchi M, Takagi M. Effects of intrauterine infusion of a chitosan solution on recovery and subsequent reproductive performance of early postpartum dairy cows with endometritis: A pilot field trial. Animals (Basel). 2021 Jan 15;11(1): 9 p.  https://doi.org/10.3390/ani11010197
 
Orellano MS, Isaac P, Breser ML, Bohl LP, Conesa A, Falcone RD, Porporatto C. Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens. Carbohydr Polym. 2019 Jun 1;213:1-9. https://doi.org/10.1016/j.carbpol.2019.02.016
 
Pachapur VL, Guemiza K, Rouissi T, Sarma SJ, Brar SK. Novel biological and chemical methods of chitin extraction from crustacean waste using saline water. J Chem Technol Biotechnol. 2016 Aug;91(8):2331-9.  https://doi.org/10.1002/jctb.4821
 
Paulino AT, Simionato JI, Garcia JC, Nozaki J. Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydr Polym. 2006 Apr 19;64(1):98-103.
 
Pereira FM, Carvalho GGP, Magalhaes TS, Freitas JE Jr, Pinto LFB, Mourao GB, Pires AJV, Eiras CE, Novais-Eiras D, Azevedo JAG, Eustaquio FA. Effect of chitosan on production performance of feedlot lambs. J Agric Sci. 2019 Mar 3;156(9):1138-44.  https://doi.org/10.1017/S0021859619000017
 
Philibert T, Lee BH, Fabien N. Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl Biochem Biotechnol. 2017 Apr;181(4):1314-37.
 
Ploydee E, Chaiyanan S. Production of high viscosity chitosan from biologically purified chitin isolated by microbial fermentation and deproteinization. Int J Polym Sci. 2014 Apr 23;2014: 9 p.
 
Raafat D, Sahl HG. Chitosan and its antimicrobial potential – A critical literature survey. Microb Biotechnol. 2009 Mar;2(2):186-201.  https://doi.org/10.1111/j.1751-7915.2008.00080.x
 
Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules. 2003 Nov-Dec;4(6):1457-65.
 
Rajasekaran P, Santra S. Hydrothermally treated chitosan hydrogel loaded with copper and zinc particles as a potential micronutrient-based antimicrobial feed additive. Front Vet Sci. 2015 Nov 23;2:62.  https://doi.org/10.3389/fvets.2015.00062
 
Raphael KJ, Meimandipour A. Antimicrobial activity of chitosan film forming solution enriched with essential oils; An in vitro assay. Iran J Biotechnol. 2017 Aug 19;15(2):111-9. https://doi.org/10.15171/ijb.1360
 
Rhazi M, Desbrieres J, Tolaimate A, Rinaudo M, Vottero P, Alagui A. Contribution to the study of the complexation of copper by chitosan and oligomers. Polymer. 2002 Feb;43:1267-76. https://doi.org/10.1016/S0032-3861(01)00685-1
 
Saez MI, Barros AM, Vizcaino AJ, Lopez G, Alarcon FJ, Martinez TF. Effect of alginate and chitosan encapsulation on the fate of BSA protein delivered orally to Gilthead Sea Bream (Sparus aurata). Anim Feed Sci Technol. 2015 Dec 1;210:114-24.  https://doi.org/10.1016/j.anifeedsci.2015.09.008
 
Santos VP, Marques NSS, Maia PCSV, Lima MAB, Franco LO, Campos-Takaki GM. Seafood waste as attractive source of chitin and chitosan production and their applications. Int J Mol Sci. 2020 Jun 16;21(12): 17 p. https://doi.org/10.3390/ijms21124290
 
Seankamsorn A, Cherdthong A, Wanapat M. Combining crude glycerin with chitosan can manipulate in vitro ruminal efficiency and inhibit methane synthesis. Animals (Basel). 2019 Dec 23;10(1): 13 p.
 
Shahidi F, Arachchi JKV, Jeon YJ. Food applications of chitin and chitosans. Trends Food Sci Technol. 1999 Feb 1;10(2):37-51. https://doi.org/10.1016/S0924-2244(99)00017-5
 
Slottner D, Bertilsson J. Effect of ensiling technology on protein degradation during ensilage. Anim Feed Sci Technol. 2006 Mar;127:101-11.
 
Song C, Yu H, Zhang M, Yang Y, Zhang G. Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. Int J Biol Macromol. 2013 Sep 1;60:347-54.
 
Swiatkiewicz S, Swiatkiewicz M, Arczewska-Wlosek A, Jozefiak D. Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition. J Anim Physiol Anim Nutr (Berl). 2015 Feb;99(1):1-12.
 
Tan YN, Lee PP, Chen WN. Microbial extraction of chitin from seafood waste using sugars derived from fruit waste-stream. AMB Express. 2020 Jan 28;10(1): 11 p. https://doi.org/10.1186/s13568-020-0954-7
 
Toral PG, Monahan FJ, Hervas G, Frutos P, Moloney AP. Review: Modulating ruminal lipid metabolism to improve the fatty acid composition of meat and milk. Challenges and opportunities. Animal. 2018 Dec;12(Suppl 2):s272-81.  https://doi.org/10.1017/S1751731118001994
 
Van Saun RJ. Feeds for camelids. In: Cebra C, Anderson D, Tibary A, Van Saun R, Johnson LW, editors. Llama and alpaca care: Medicine, surgery, reproduction, nutrition, and herd health. 1st ed. Amsterdam: Elsevier Inc.; 2013. p. 80-91.
 
Vilar JC Jr, Ribeaux DR, Alves da Silva CA, De Campos-Takaki GM. Physicochemical and antibacterial properties of chitosan extracted from waste shrimp shells. Int J Microbiol. 2016 Jul 13;2016: 8 p. https://doi.org/10.1155/2016/5127515
 
Watts SA, Lawrence AL, Lawrence JM. Nutrition. In: Lawrence JM, editor. Sea urchins: Biology and ecology. 4th ed. Vol. 1. Amsterdam: Elsevier Inc.; 2020. p. 191-208.
 
Wencelova M, Varadyova Z, Mihalikova K, Kisidayova S, Jalc D. Evaluating the effects of chitosan, plant oils, and different diets on rumen metabolism and protozoan population in sheep. Turk J Vet Anim Sci. 2014 Jan;38(1):26-33.  https://doi.org/10.3906/vet-1307-19
 
Yadav M, Goswami P, Paritosh K, Kumar M, Pareek N, Vivekanand V. Seafood waste: A source for preparation of commercially employable chitin/chitosan materials. Bioresour Bioprocess. 2019 Feb 8;6(1):1-20. https://doi.org/10.1186/s40643-019-0243-y
 
Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs. 2015 Mar 2;13(3):1133-74.  https://doi.org/10.3390/md13031133
 
Yu D, Regenstein JM, Zang J, Xia W, Xu Y, Jiang Q, Yang F. Inhibitory effects of chitosan-based coatings on endogenous enzyme activities, proteolytic degradation and texture softening of grass carp (Ctenopharyngodon idellus) fillets stored at 4 °C. Food Chem. 2018 Oct 1;262:1-6. https://doi.org/10.1016/j.foodchem.2018.04.070
 
Zanferari F, Vendramini THA, Rentas MF, Gardinal R, Calomeni GD, Mesquita LG, Takiya CS, Renno FP. Effects of chitosan and whole raw soybeans on ruminal fermentation and bacterial populations, and milk fatty acid profile in dairy cows. J Dairy Sci. 2018 Dec;101(12):10939-52. https://doi.org/10.3168/jds.2018-14675
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti