The presence of pathogens in milk of ewes in relation to the somatic cell count and subpopulations of leukocytes

Tvarožková K., Vašíček J., Uhrinčať M., Mačuhová L., Hleba L., Tančin V. (2021): The presence of pathogens in milk of ewes in relation to the somatic cell count and subpopulations of leukocytes. Czech J. Anim. Sci., 66: 315-322.

download PDF

Mastitis is a major health problem of the udder in dairy sheep breeds. For diagnosis of subclinical mastitis, somatic cell count (SCC) is commonly used. The presence of pathogens in the udder causes the increase of leukocytes and thus SCC in milk. Therefore, the aim of this study was to evaluate the presence of pathogens in the milk of ewes and the possible relationship with SCC. The changes of leukocytes subpopulation in milk samples with high SCC were evaluated as well. The experiment was carried out on a dairy farm with the Lacaune breed. This study was conducted on 45 ewes (98 milk samples) without signs of clinical mastitis. Based on somatic cell count, samples were divided to five SCC groups: SCC1 < 200 000 cells/ml (45 milk samples); 200 000 ≤ SCC2 < 400 000 cells/ml (10 milk samples); 400 000 ≤ SCC3 < 600 000 cells/ml (six milk samples); 600 000 ≤ SCC4 < 1 000 000 cells/ml (six milk samples); SCC5 ≥ 1 000 000 cells/ml (31 milk samples). No pathogens were observed in the majority of milk samples (60.20%). Coagulase-negative staphylococci (CNS) were the most commonly isolated pathogens from the milk of ewes (86.11%). Staphylococcus epidermidis had the highest incidence from CNS (35.48%). In the SCC5 group, up to 79.31% of bacteriological samples were positive. The percentage of leukocytes significantly increased (P < 0.001) in the samples with higher SCC (≥ 200 × 103 cells/ml) in comparison to the group SCC1. Also, the percentage of polymorphonuclear cells (PMNs) was significantly higher with increasing SCC (P < 0.001). In conclusion, the presented results showed that the high SCC was caused by the presence of the pathogen in milk. Thus SCC < 200 000 cells/ml and leukocyte subpopulation, especially PMNs, could be considered as important tools in udder health programs applied in dairy ewes.

Albenzio M, Caroprese M. Differential leucocyte count for ewe milk with low and high somatic cell count. J Dairy Res. 2011 Feb;78(1):43-8.
Albenzio M, Santillo A, Caroprese M, Ruggieri D, Ciliberti M, Sevi A. Immune competence of the mammary gland as affected by somatic cell and pathogenic bacteria in ewes with subclinical mastitis. J Dairy Sci. 2012 Jul 1;95(7):3877-87.
Aref NEM, Sayed AS, Zahran AM, Abdelaal GA, Nasser EA. Flow cytometric analysis of somatic cells and oxidant/antioxidant profile in dairy cows with subclinical mastitis. Bulg J Vet Med. 2018 Jan;21(3):347-57.
Aytekin I, Eyduran E, Keskin I. Detecting the relationship of California mastitis test (CMT) with electrical conductivity, composition and quality of the milk in Holstein-Friesian and brown swiss cattle breeds using cart analysis. Fresenius Environ Bull. 2018 Jan 1;27(6):4559-65.
Bagnicka E, Winnicka A, Jozwik A, Rzewuska M, Strzalkowska N, Kosciuczuk E, Prusak B, Kaba B, Horbanczuk J, Krzyzewski J. Relationship between somatic cell count and bacterial pathogens in goat milk. Small Rumin Res. 2011 Sep 1;100(1):72-7.
Damm M, Holm C, Blaabjerg M, Novak Bro M, Schwarz D. Differential somatic cell count–A novel method for routine mastitis screening in the frame of Dairy Herd Improvement testing programs. J Dairy Sci. 2017 Jun 1;100(6):4926-40.
De Matteis G, Grandoni F, Scata MC, Catillo G, Moioli B, Buttazzoni L. Flow cytometry-detected immunological markers and on farm recorded parameters in composite cow milk as related to udder health status. Vet Sci. 2020 Sep;7(3): 10 p.
Ergun Y, Aslantas O, Dogruer G, Kirecci E, Saribay MK, Ates CT, Ulku A, Demir C. Prevalence and etiology of subclinical mastitis in Awasi dairy ewes in southern Turkey. Turk J Vet Anim Sci. 2009 Dec 21;33(6):477-83.
Eyduran E, Yilmaz I, Kaygisiz A, Aktas ZM. An investigation on relationship between lactation milk yield, somatic cell count and udder traits in first lactation Turkish saanen goat using different statistical techniques. J Anim Plant Sci. 2013 Jan;23(4):956-63.
Gelasakis AI, Mavrogianni VS, Petridis IG, Vasileiou NGC, Fthenakis GC. Mastitis in sheep–The last 10 years and future of research. Vet Microbiol. 2015 Dec 14;181(1-2):136-46.
Holko I, Tancin V, Tvarozkova K, Supuka P, Supukova A, Macuhova L. Occurrence and antimicrobial resistance of common udder pathogens isolated from sheep milk in Slovakia. Potravinarstvo. 2019 Apr;13(1):258-61.
Jurinke C, Oeth P, Van Den Boom D. MALDI-TOF mass spectrometry: A versatile tool for high-performance DNA analysis. Mol Biotechnol. 2004 Feb;26(2):147-64.
Kuchtik J, Konecna L, Sykora V, Sustova K, Fajman M, Kos I. Changes of physico-chemical characteristics, somatic cell count and curd quality during lactation and their relationships in Lacaune ewes. Mljekarstvo. 2017 Apr 19;67(2):138-45.
Leitner G, Chaffer M, Krifucks O, Glickman A, Ezra F, Saran A. Milk leukocyte populations in heifers free of udder infection. J Vet Med. 2000 Mar;47(2):133-8.
Leitner G, Merin U, Krifucks O, Blum S, Rivas AL, Silanikove N. Effects of intra-mammary bacterial infection with coagulase negative staphylococci and stage of lactation on shedding of epithelial cells and infiltration of leukocytes into milk: Comparison among cows, goats and sheep. Vet Immunol Immunopathol. 2012 Jun 30;147(3-4):202-10.
Lindmark-Mansson H, Braning G, Alden G, Paulsson M. Relationship between somatic cell count, individual leukocyte populations and milk compositions in bovine udder quarter milk. Int Dairy J. 2006 Jul 1;16(7):717-27.
Mavrogianni VS, Gripps PJ, Fthenakis GC. Bacterial flora and risk of infection of the ovine teat duct and mammary gland throughout lactation. Prev Vet Med. 2007 May 16;79(2-4):163-73.
Milerski M, Ptacek M, Duchacek J, Schmidova J, Uhrincat M, Stadnik L, Tancin V. Analysis of the relationship between milk production, milk composition and morphological udder measurements in Wallachian sheep. Czech J Anim Sci. 2020 Nov 27;65(11):424-30.
Moroni P, Pisoni G, Varisco G, Boettcher P. Effect of intramammary infection in Bergamasca meat sheep on milk parameters and lamb growth. J Dairy Res. 2007 Aug;74(3):340-4.
Persson Y, Nyman AK, Soderquist L, Tomic N, Persson Waller K. Intramammary infections and somatic cell count in meat and pelt producing ewes with clinically healthy udders. Small Rumin Res. 2017 Nov 1;156:66-72.
Queiroga MC, Duarte EL, Laranjo M. Sheep mastitis Staphylococcus epidermidis biofilm effects on cell adhesion and inflammatory change. Small Rumin Res. 2018 Nov;168:6-11.
Silanikove N, Merin U, Shapiro F, Leitner G. Subclinical mastitis in goats is associated with upregulation of nitric oxide-derived oxidative stress that causes reduction of milk antioxidative properties and impairment of its quality. J Dairy Sci. 2014 Jun 1;97(6):3449-55.
Souza FN, Blagitz MG, Penna CFAM, Della Libera AMMP, Heinemann MB, Cerqueira MMOP. Somatic cell count in small ruminants: Friend or foe? Small Rumin Res. 2012 Oct 1;107(2-3):65-75.
Souza FN, Blagitz MG, Batista CF, Takano PV, Gargano RG, Diniz SA, Silva MX, Ferronatto JA, Santos KR, Heinemann MB, De Vliegher S, Della Libera AMMP. Immune response in nonspecific mastitis: What can it tell us? J Dairy Sci. 2020 Jun;103(6):5376-86.
Swiderek WP, Charon KM, Winnicka A, Gruszczynska J, Pierzchala M. Physiological threshold of somatic cell count in milk of Polish Heath Sheep and Polish Lowland Sheep. Ann Anim Sci. 2016 Jan;16(1):155-70.
Tancin V, Baranovic S, Uhrincat M, Macuhova L, Vrskova M, Oravcova M. Somatic cell count in raw ewes milk in dairy practice: Frequency of distribution and possible effect on milk yield and composition. Mljekarstvo. 2017 Sep 29;67(4):253-60.
Tvarozkova K, Tancin V, Holko I, Uhrincat M, Macuhova L. Mastitis in ewes: Somatic cell counts, pathogens and antibiotic resistance. J Microbiol Biotechnol Food Sci. 2019 Dec-2020 Jan;9(3):661-70.
Tvarozkova K, Tancin V, Uhrincat M, Hleba L, Macuhova L. Mastitis pathogens and somatic cell count in ewes milk. Potravinarstvo. 2020 Apr;14(1):164-9.
Vasicek J, Tvarozkova K, Uhrincat M, Macuhova L, Hleba L, Tancin V. Distribution of leucocytes and epithelial cells in sheep milk in relation to the somatic cell count and bacterial occurrence: A preliminary study. Slovak J Anim Sci. 2019 Dec 17;52(4):160-5.
Vasileiou NGC, Cripps PJ, Ioannidi KS, Chatzopoulos DC, Gougoulis DA, Sarrou S, Orfanou DC, Politis AP, Calvo Gonzalez-Valerio T, Argyros S, Mavrogianni VS, Petinaki E, Fthenakis GC. Extensive countrywide field investigation of subclinical mastitis in sheep in Greece. J Dairy Sci. 2018 Aug 1;101(8):7297-310.
Watts JL, Salmon SA, Yancey RJ Jr. Use of modified Rambach agar to differentiate Streptococcus uberis from other mastitis streptococci. J Dairy Sci. 1993 Jun 1;76(6):1740-3.
Zigo F, Vasil M, Takac L, Elecko J, Tomko J, Chripkova M. Mastitis pathogens isolated from samples of milk in dairy sheep and their resistance. Int J Sci Res. 2017 Aug;6(8):298-300.
Zoche-Golob V, Haverkamp H, Paduch JH, Klocke D, Zinke C, Hoedemaker M, Heuwieser W, Kromker V. Longitudinal study of the effects of teat condition in the risk of new intramammary infections in dairy cows. J Dairy Sci. 2015 Feb 1;98(2):910-7.
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti