Negative impact of heat stress on reproduction
in cows: Animal husbandry and biotechnological viewpoints: A review

https://doi.org/10.17221/44/2021-CJASCitation:

Bezdíček J., Nesvadbová A., Makarevich A., Kubovičová E. (2021): Negative impact of heat stress on reproduction in cows: Animal husbandry and biotechnological viewpoints: A review. Czech J. Anim. Sci., 66: 293-301.

download PDF

This review summarises current knowledge of the relationship between heat stress (HS) and reproduction in cattle. It focuses on research from the viewpoint of genetics (breed), from the viewpoint of reproduction physiology (in vivo and in vitro) and from the animal husbandry practice. From the viewpoint of animal husbandry, it was evidenced that heat stress influences reproduction before, during and after conception. Most publications suggest the negative impact of heat stress on the reproductive physiology of cows reflected in ovarian and follicular activity, in oocyte and embryo development, as well as in other processes studied under in vivo or in vitro conditions. There are also a number of products that the cell creates in response to heat stress, which is used as indicators of the stress (e.g. heat shock proteins). A number of publications also focus on how to prevent heat stress on the farm (e.g. shade, water shower) or during in vitro procedures, including the supplementation of the culture media with antioxidants like melatonin. Research of heat stress is very important in cattle breeding for preventing and reducing its effects on the farm and also in the context of climate changes and global atmospheric warming.

References:
Al-Katanani YM, Webb DW, Hansen PJ. Factors affecting seasonal variation in 90-day non-return rate to first service in lactating Holstein cows in a hot climate. J Dairy Sci. 1999 Dec 1;82(12):2611-6. https://doi.org/10.3168/jds.S0022-0302(99)75516-5
 
Al-Katanani YM, Paula-Lopes FF, Hansen PJ. Effect of season and exposure to heat stress on oocyte competence in Holstein cows. J Dairy Sci. 2002 Feb 1;85(2):390-6. https://doi.org/10.3168/jds.S0022-0302(02)74086-1
 
Allen MR, Dube OP, Solecki W, Aragon-Durand F, Cramer W, Humphreys S, Kainuma M, Kala J, Mahowald N, Mulugetta Y, Perez R, Wairiu M, Zickfeld K. Framing and context. In: Masson-Delmotte V, Zhai P, Portner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Pean C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T, editors. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva, Switzerland: Intergovernmental Panel on Climate Change; 2018. p. 49-91.
 
Badinga L, Thatcher WW, Diaz T, Drost M, Wolfenson D. Effect of environmental heat stress on follicular development and steroidogenesis in lactating Holstein cows. Theriogenology. 1993 Apr 1;39(4):797-810. https://doi.org/10.1016/0093-691X(93)90419-6
 
Bezdicek J, Stadnik L, Makarevich A, Kubovicova E, Louda F, Hegedusova Z, Holasek R. The effect of mild temperature stress on the ovarian activity in cows. J Microbiol Biotech Food Sci. 2019 Dec-2020 Jan;9(3):639-42.
 
Bezdicek J, Nesvadbova A, Louda F. The effect of high summer temperatures on reproduction in Holstein and Czech Fleckvieh. Acta Univ Agric Silvic Mendelianae Brun. 2020 Feb 27;68(1):9-16. https://doi.org/10.11118/actaun202068010009
 
Biniova Z, Stadnik L, Dolezalova M, Duchacek J. Effect of thawing method on bull sperm survival in ejaculates frozen in 4 ml and 8 ml volumes. Czech J Anim Sci. 2018 Sep 27;63(10):399-407. https://doi.org/10.17221/117/2018-CJAS
 
Broucek J, Ryba S, Dianova M, Uhrincat M, Soch M, Sistkova M, Mala G, Novak P. Effect of evaporative cooling and altitude on dairy cows milkefficiency in lowlands. Int J Biometeorol. 2020 Mar;64(3):433-44. https://doi.org/10.1007/s00484-019-01828-5
 
Chebel RC, Santos JEP, Reynolds JP, Cerri RLA, Juchem SO, Overton M. Factors affecting conception rate after artificial insemination and pregnancy loss in lactating dairy cows. Anim Repr Sci. 2004 Sep 1;84(3-4):239-55. https://doi.org/10.1016/j.anireprosci.2003.12.012
 
Deb R, Sajjanar B, Singh U, Kumar S, Singh R, Sengar G, Sharma A. Effect of heat stress on the expression profile of Hsp90 among Sahiwal (Bos indicus) and Frieswal (Bos indicus × Bos taurus) breed of cattle: A comparative study. Gene. 2014 Feb 25;536(2):435-40. https://doi.org/10.1016/j.gene.2013.11.086
 
Dikmen S, Alava E, Pontes E, Fear JM, Dikmen BY, Olson TA, Hansen PJ. Differences in thermo-regulatory ability between slick-haired and wild-type lactating Holstein cows in response to acute heat stress. J Dairy Sci. 2008 Sep 1;91(9):3395-402. https://doi.org/10.3168/jds.2008-1072
 
Do LTK, Shibata Y, Taniguchi M, Nii M, Nguyen TV, Tanihara F, Takagi M, Otoi T. Melatonin supplementation during in vitro maturation and development supports the development of porcine embryos. Reprod Domest Anim. 2015 Dec;50(6):1054-8. https://doi.org/10.1111/rda.12607
 
Dolezalova M, Stadnik L, Biniova Z, Duchacek J, Stupka R. Equilibration and freezing interactions affecting bull sperm characteristics after thawing. Czech J Anim Sci. 2016 Nov 17;61(11):515-25. https://doi.org/10.17221/23/2016-CJAS
 
Duy QD, Thi CN, Nguyen MT, Pham CN. Is vitamin A an antioxidant or a pro-oxidant? J Phys Chem B. 2017 Oct 12;121(40):9348-57. https://doi.org/10.1021/acs.jpcb.7b07065
 
Garcia-Ispierto I, Abdelfatah A, Lopez-Gatius F. Melatonin treatment at dry-off improves reproductive performance postpartum in high-producing dairy cows under heat stress conditions. Reprod Domest Anim. 2013 Aug;48(4):577-83. https://doi.org/10.1111/rda.12128
 
Gendelman M, Roth Z. Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence. Biol Reprod. 2012 Nov 1;87(5): 12 p. https://doi.org/10.1095/biolreprod.112.101881
 
Herbut P, Angrecka S, Nawalany G, Adamczyk K. Spatial and temporal distribution of temperature, relative humidity and air velocity in a parallel milking parlour during summer period. Ann Anim Sci. 2015 Apr 1;15(2):517-26.  https://doi.org/10.1515/aoas-2015-0001
 
Jee H. Size dependent classification of heat shock proteins: A mini-review. J Exerc Rehabil. 2016 Aug;12(4):255-9. https://doi.org/10.12965/jer.1632642.321
 
Ju JC, Tseng JK. Nuclear and cytoskeletal alterations ofin vitro matured porcine oocytes under hyperthermia. Mol Reprod Dev. 2004 May;68(1):125-33. https://doi.org/10.1002/mrd.20054
 
Ju JC, Parks JE, Yang X. Thermotolerance of IVM-derived bovine oocytesand embryos after short-term heat shock. Mol Reprod Dev. 1999 Jul;53(3):336-40. https://doi.org/10.1002/(SICI)1098-2795(199907)53:3<336::AID-MRD9>3.0.CO;2-M
 
Kendall PE, Verkerk GA, Webster JR, Tucker CB. Sprinklers and shade cool cows and reduce insect-avoidance behavior in pasture-based dairy systems. J Dairy Sci. 2007 Aug 1;90(8):3671-80. https://doi.org/10.3168/jds.2006-766
 
Khatun H, Ihara Y, Takakura K, Egashira J, Wada Y, Konno T, Tatemoto H, Yamanaka K. Role of endoplasmic reticulum stress on developmental competency and cryo-tolerance in bovine embryos. Theriogenology. 2020 Jan 15;142:131-7.  https://doi.org/10.1016/j.theriogenology.2019.09.042
 
Kiriyama MT, Oka M, Takehana M, Kobayashi S. Expression of a small heat shock protein 27 (HSP27) in mouse skin tumors induced by UVB-irradiation. Biol Pharm Bulletin. 2001;24(2):197-200.  https://doi.org/10.1248/bpb.24.197
 
Legrand A, Schutz KE, Tucker CB. Using water to cool cattle: Behavioural and physiological changes associated with voluntary use of cow showers. J Dairy Sci. 2011 Jul 1;94(7):3376-86. https://doi.org/10.3168/jds.2010-3901
 
Li Y, Zhang Z, He C, Zhu K, Xu Z, Ma T, Tao J, Liu G. Melatonin protects porcine oocyte in vitro maturation from heat stress. J Pineal Res. 2015 Oct;59(3):365-75. https://doi.org/10.1111/jpi.12268
 
Livingston TE, Eberhardt DM, Edwards JL, Godkin J. Retinol improves bovine embryonic development in vitro. Reprod Biol Endocrinol. 2004 Dec 21;2(1): 7 p. https://doi.org/10.1186/1477-7827-2-83
 
Lopez-Gatius F, Garcia-Ispierto I, Hunter RH. Factors affecting spontaneous reduction of corpora lutea and twin embryos during the late embryonic/early fetal period in multiple-ovulating dairy cows. Theriogenology. 2010 Feb 1;73(3):293-9. https://doi.org/10.1016/j.theriogenology.2009.09.012
 
Mariasegaram M, Chase CC Jr, Chaparro JX, Olson TA, Brenneman RA, Niedz RP. The slick hair coat locus maps to chromosome 20 in Senepol-derived cattle. Anim Genet. 2007 Feb;38(1):54-9. https://doi.org/10.1111/j.1365-2052.2007.01560.x
 
McGregor G, Vanos J. Heat: A primer for public health researchers. Public Health. 2018 Aug 1;161;138-46. https://doi.org/10.1016/j.puhe.2017.11.005
 
Morton JM, Tranter WP, Mayer DG, Jonsson NN. Effects of environmental heat on conception rates in lactating dairy cows: Critical periods of exposure. J Dairy Sci. 2007 May 1;90(5):2271-8. https://doi.org/10.3168/jds.2006-574
 
Nguyen TTT, Bowman PJ, Haile-Mariam M, Nieuwhof GJ, Hayes BJ, Pryce JE. Short communication: Implementation of a breeding value for heat tolerance in Australian dairy cattle. J Dairy Sci. 2017 Sep 1;100(9):7362-7. https://doi.org/10.3168/jds.2017-12898
 
Olson TA, Lucena C, Chase CC, Hammond AC. Evidence of a major gene influencing hair length and heat tolerance in Bos taurus cattle. J Anim Sci. 2003 Jan 1;81(1):80-90. https://doi.org/10.2527/2003.81180x
 
Ortega MS, Rocha-Frigoni NAS, Mingoti GZ, Roth Z, Hansen PJ. Modification of embryonic resistance to heat shock in cattle by melatonin and genetic variation in HSPA1L. J Dairy Sci. 2016 Nov 1;99(11):9152-64. https://doi.org/10.3168/jds.2016-11501
 
Oseni S, Mistzal I, Tsuruta S, Rekaya R. Genetic components of days open under heat stress. J Dairy Sci. 2004 Sep 1;87(9):3022-8. https://doi.org/10.3168/jds.S0022-0302(04)73434-7
 
Ravagnolo O, Misztal I. Effect of heat stress on non-return rate in Holstein cows: Genetic analyses. J Dairy Sci. 2002 Nov 1;85(11):3092-100. https://doi.org/10.3168/jds.S0022-0302(02)74396-8
 
Rocha A, Randel RD, Broussard JR, Lim JM, Blair RM, Roussel JD, Godke RA, Hansel W. High environmental temperature and humidity decrease oocyte quality in Bos taurus but not in Bos indicus cows. Theriogenology. 1998 Feb 1;49(3):657-65.  https://doi.org/10.1016/S0093-691X(98)00016-8
 
Sakatani M, Bonilla L, Dobbs KB, Block J, Ozawa M, Shanker S, Yao JQ, Hansen PJ. Changes in the transcriptome of morula-stagebovine embryos caused by heat shock: Relationship to developmental acquisitionof thermotolerance. Reprod Biol Endocrinol. 2013 Dec;11(1): 12 p. https://doi.org/10.1186/1477-7827-11-3
 
Schuller LK, Burfeind O, Heuwieser W. Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature–Humidity index thresholds, periods relative to breeding, and heat load indices. Theriogenology. 2014 May 1;81(8):1050-7. https://doi.org/10.1016/j.theriogenology.2014.01.029
 
Schuller LK, Michaelis I, Heuwieser W. Impact of heat stress on estrus expression and follicle size in estrus under field conditions in dairy cows. Theriogenology. 2017 Oct 15;102:48-53. https://doi.org/10.1016/j.theriogenology.2017.07.004
 
Schutz KE, Rogers AR, Cox NR, Webster JR, Tucker CB. Dairy cattle prefer shade over sprinklers: Effects on behavior and physiology. J Dairy Sci. 2011 Jan 1;94(1):273-83. https://doi.org/10.3168/jds.2010-3608
 
Silva CF, Sartorelli ES, Castilho ACS, Satrapa RA, Puelker RZ, Razza EM, Ticianelli JS, Eduardo HP, Loureiro B, Barros CM. Effects of heat stress on development, quality and survival of Bos indicus and Bos taurus embryos produced in vitro. Theriogenology. 2013 Jan 15;79(2):351-7. https://doi.org/10.1016/j.theriogenology.2012.10.003
 
Soto-Heras S, Roura M, Catala MG, Menendez-Blanco I, Izquierdo D, Fouladi-Nashta AA, Paramio MT. Beneficial effects of melatonin on in vitro embryo production from juvenile goat oocytes. Reprod Fertil Dev. 2018 Jan 30;30(2):253-61. https://doi.org/10.1071/RD17170
 
Takehara I, Igarashi H, Kawagoe J, Matsuo K, Takahashi K, Nishi M, Nagase S. Impact of endoplasmic reticulum stress on oocyte aging mechanisms. Mol Hum Reprod. 2020 Aug;26(8):567-75. https://doi.org/10.1093/molehr/gaaa040
 
Tseng JK, Chen CH, Chou PC, Yeh SP, Ju JC. Influences of follicular size on parthenogenetic activation and in vitro heat shock on the cytoskeleton in cattle oocytes. Reprod Dom Anim. 2004 Jun;39(3):146-53. https://doi.org/10.1111/j.1439-0531.2004.00493.x
 
Villa-Mancera A, Mendez-Mendoza M, Huerta-Crispin R, Vazquez-Flores F, Cordova-Izquierdo A. Effect of climate factors on conception rate of lactating dairy cows in Mexico. Trop Anim Health Prod. 2011 Mar;43(3):597-601. https://doi.org/10.1007/s11250-010-9737-5
 
Wang S, Liu B, Liu W, Xiao Y, Zhang H, Yang L. The effects of melatonin on bovine uniparental embryos development in vitro and the hormone secretion of COCs. PeerJ. 2017 Jul 7;5: 23 p. https://doi.org/10.7717/peerj.3485
 
Wilson SJ, Kirby CJ, Koenigsfeld AT, Keisler DH, Lucy MC. Effects of controlled heat stress on ovarian function of dairy cattle. 2. Heifers. J Dairy Sci. 1998 Aug 1;81(8):2132-8.  https://doi.org/10.3168/jds.S0022-0302(98)75789-3
 
Zhang Y, Qu P, Ma X, Qiao F, Ma Y, Qing S, Zhang Y, Wang Y, Cui W. Tauroursodeoxycholicacid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation. PLoS One. 2018 May 2;13(5): 14 p. https://doi.org/10.1371/journal.pone.0196785
 
Zhao XM, Hao HS, Du WH, Zhao SJ, Wang HY, Wang N, Wang D, Liu Y, Qin T, Zhu HB. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J Pineal Res. 2016 Mar;60(2):132-41. https://doi.org/10.1111/jpi.12290
 
Zubor T, Hollo G, Posa R, Nagy-Kiszlinger H, Vigh Z, Huth B. Effect of rectal temperature on efficiency of artificial insemination and embryo transfer technique in dairy cattle during hot season. Czech J Anim Sci. 2020 Aug 30;65(8):295-302. https://doi.org/10.17221/14/2020-CJAS
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti