Isolation, culture and identification of sheep skeletal muscle satellite cells

https://doi.org/10.17221/52/2022-CJASCitation:

Wan SL, Pan QQ, Wei JB, Zhu CY, Jing J, Qin SQ, Hu RC, Lou MY, Li S, Ling YH (2022): Isolation, culture and identification of sheep skeletal muscle satellite cells. Czech J. Anim. Sci., 67: 416–423.

download PDF

Skeletal muscle satellite cells (SMSCs) play an important role in muscle growth, regeneration and maintenance. This study aimed to isolate SMSCs from sheep, establish a system for isolation, culture and identification of SMSCs in vitro, and provide seed cells for subsequent studies. SMSCs were isolated and purified from newborn 2-day-old healthy sheep by collagenase type I and trypsin two-step digestion and pre-plating method. The results indicated that the isolated and purified SMSCs showed full spindle shape and strong refractive index. The cell growth curve detected by CCK-8 kit was typical “S” type. Immunofluorescence analysis showed that the isolated cells expressed SMSC marker proteins Pax7 and MyoD1. After induction of myogenic differentiation, the cells fused with each other to form multinucleated myotubes and expressed the myoblast specific marker MHC. RT-PCR results showed that the cells expressed SMSC marker gene Pax 7. This experiment established an in vitro isolation, purification and identification system for sheep skeletal muscle satellite cells, which provided a good cell model for studying the biological mechanism of sheep skeletal muscle cells, optimizing sheep breeds, and cell transplantation repair.

References:
Buckingham ME, Lyons GE, Ott MO, Sassoon DA. Myogenesis in the mouse. In: Chadwick DJ, Marsh J, editors. Postimplantation development in the mouse: Postimplantation development in the mouse. Ciba Foundation Symposium 165. Chichester: John Wiley and Sons; 1992. p. 111-31.
 
Forcina L, Miano C, Pelosi L, Musaro A. An overview about the biology of skeletal muscle satellite cells. Curr Genomics. 2019 Jan 1;20(1):24-37.
 
Gharaibeh B, Lu A, Tebbets J, Zheng B, Feduska J, Crisan M, Peault B, Cummins J, Huard J. Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat Protoc. 2008 Sep;3(9):1501-9.
 
Kamanga-Sollo E, White ME, Hathaway MR, Weber WJ, Dayton WR. Effect of trenbolone acetate on protein synthesis and degradation rates in fused bovine satellite cell cultures. Domest Anim Endocrinol. 2011 Jan;40(1):60-6.
 
Kastner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z. Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem. 2000 Aug;48(8):1079-96.
 
Keire P, Shearer A, Shefer G, Yablonka-Reuveni Z. Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells. Methods Mol Biol. 2013 Apr 23;946:431-68.
 
Lei HL, Yu B, Yang XR, Liu ZH, Huang ZQ, Mao XB, Tian G, He J, Han GQ, Chen H, Mao Q, Chen DW. Inhibition of adipogenic differentiation by myostatin is alleviated by arginine supplementation in porcine-muscle-derived mesenchymal stem cells. Sci China Life Sci. 2011 Oct;54(10):908-16.
 
Li YH, Li FN, Lin BB, Kong XF, Tang YL, Yin YL. Myokine IL-15 regulates the crosstalk of co-cultured porcine skeletal muscle satellite cells and preadipocytes. Mol Biol Rep. 2014 Nov;41(11):7543-53.
 
Li BJ, Li PH, Huang RH, Sun WX, Wang H, Li QF, Chen J, Wu WJ, Liu HL. Isolation, culture and identification of porcine skeletal muscle satellite cells. Asian-Australas J Anim Sci. 2015 Aug;28(8):1171-7.
 
Liu Y, Chen S, Li W, Du H, Zhu W. Isolation and characterization of primary skeletal muscle satellite cells from rats. Toxicol Mech Method. 2012 Nov;22(9):721-5.
 
Maesner CC, Almada AE, Wagers AJ. Established cell surface markers efficiently isolate highly overlapping populations of skeletal muscle satellite cells by fluorescence-activated cell sorting. Skelet Muscle. 2016 Dec;6(1): 10 p.
 
Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961 Feb;9(2):493-5.
 
Minnaard R, Schrauwen P, Schaart G, Jorgensen JA, Lenaers E, Mensink M, Hesselink MKC. Adipocyte differentiation-related protein and OXPAT in rat and human skeletal muscle: Involvement in lipid accumulation and type 2 diabetes mellitus. J Clin Endocr Metab. 2009 Oct;94(10):4077-85.
 
Montoya-Flores D, Mora O, Tamariz E, Gonzalez-Davalos L, Gonzalez-Gallardo A, Antaramian A, Shimada A, Varela-Echavarria A, Romano-Munoz JL. Ghrelin stimulates myogenic differentiation in a mouse muscle satellite cell line and in primary cultures of bovine myoblasts. J Anim Physiol Anim Nutr. 2012 Aug;96(4):725-38.
 
Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: The cell on the edge returns centre stage. Development. 2012 Aug;139(16):2845-56. https://doi.org/10.1242/dev.069088
 
Renault V, Rolland E, Thornell LE, Mouly V, Butler-Browne G. Distribution of satellite cells in the human vastus lateralis muscle during aging. Exp Gerontol. 2002 Dec;37(12):1513-4. https://doi.org/10.1016/S0531-5565(02)00095-5
 
Richler C, Yaffe D. The in vitro cultivation and differentiation capacities of myogenic cell lines. Dev Biol. 1970 Sep;23(1):1-22.
 
Sawano S, Mizunoya W. History and development of staining methods for skeletal muscle fiber types. Histol Histopathol. 2022 Jun;37(6):493-503.
 
Schmidt M, Schuler SC, Huttner SS, Von Eyss B, Von Maltzahn J. Adult stem cells at work: Regenerating skeletal muscle. Cell Mol Life Sci. 2019 Jul;76(13):2559-70. https://doi.org/10.1007/s00018-019-03093-6
 
Sincennes MC, Brun CE, Lin AYT, Rosembert T, Datzkiw D, Saber J, Ming H, Kawabe YI, Rudnicki MA. Acetylation of PAX7 controls muscle stem cell self-renewal and differentiation potential in mice. Nat Commun. 2021 May 31;12(1): 15 p.
 
Wang Y, Xiao X, Wang L. In vitro characterization of goat skeletal muscle satellite cells. Anim Biotechnol. 2020 Apr;31(2):115-21. https://doi.org/10.1080/10495398.2018.1551230
 
Wang H, He K, Zeng XH, Zhou XL, Yan FF, Yang SB, Zhao A. Isolation and identification of goose skeletal muscle satellite cells and preliminary study on the function of C1q and tumor necrosis factor-related protein 3 gene. Anim Biosci. 2021 Jun;34(6):1078-87.
 
Wu H, Ren Y, Li S, Wang W, Yuan J, Guo X, Liu D, Cang M. In vitro culture and induced differentiation of sheep skeletal muscle satellite cells. Cell Biol Int. 2012 Jun 1;36(6):579-87.
 
Wu J, Matthias N, Lo J, Ortiz-Vitali JL, Shieh AW, Wang SH, Darabi R. A myogenic double-reporter human pluripotent stem cell line allows prospective isolation of skeletal muscle progenitors. Cell Rep. 2018 Nov 13;25(7):1966-81. https://doi.org/10.1016/j.celrep.2018.10.067
 
Yan J, Gan L, Yang HL, Sun C. The proliferation and differentiation characteristics of co-cultured porcine preadipocytes and muscle satellite cells in vitro. Mol Biol Rep. 2013 Apr;40(4):3197-202. https://doi.org/10.1007/s11033-012-2395-0
 
Zhang H, Wen J, Bigot A, Chen J, Shang R, Mouly V, Bi P. Human myotube formation is determined by MyoD-Myomixer/Myomaker axis. Sci Adv. 2020 Dec;6(51): 14 p.
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti