Dietary energy level affects the composition of cecal microbiota of starter Pekin ducklings

 

https://doi.org/10.17221/53/2017-CJASCitation:Liu J.Q., Wang Y.H., Fang X.T., Xie M., Zhang Y.S., Hou S.S., Chen H., Chen G.H., Zhang C.L. (2018): Dietary energy level affects the composition of cecal microbiota of starter Pekin ducklings  . Czech J. Anim. Sci., 63: 24-31.
download PDF

In this study, we evaluated the phylogenetic diversity of the cecal microbiota of 3-week-old ducklings fed three diets differing in metabolizable energy. The contents of the ceca were collected from ducklings of different groups. The ceca bacterial DNA was isolated and the V3 to V4 regions of 16S rRNA genes were amplified. The amplicons were subjected to high-throughput sequencing to analyze the bacterial diversity of different groups. The predominant bacterial phyla were Bacteroidetes (~65.67%), Firmicutes (~17.46%), and Proteobacteria (~10.73%). The abundance of Bacteroidetes increased and that of Firmicutes decreased with increasing dietary energy level. The diversity decreased (Simpson diversity index and Shannon diversity index) with the increase in dietary energy level, but the richness remained constant. Notably, Brachyspira bacteria were detected with a very high relative abundance (4.91%) in ceca of ducks fed a diet with 11.30 MJ/kg metabolizable energy, suggesting that low energy content may affect their colonization in cecum.

References:
Amato Katherine R., Leigh Steven R., Kent Angela, Mackie Roderick I., Yeoman Carl J., Stumpf Rebecca M., Wilson Brenda A., Nelson Karen E., White Bryan A., Garber Paul A. (2015): The Gut Microbiota Appears to Compensate for Seasonal Diet Variation in the Wild Black Howler Monkey (Alouatta pigra). Microbial Ecology, 69, 434-443  https://doi.org/10.1007/s00248-014-0554-7
 
Bedford M.R., Cowieson A.J. (2012): Exogenous enzymes and their effects on intestinal microbiology. Animal Feed Science and Technology, 173, 76-85  https://doi.org/10.1016/j.anifeedsci.2011.12.018
 
Callaway T. R., Dowd S. E., Wolcott R. D., Sun Y., McReynolds J. L., Edrington T. S., Byrd J. A., Anderson R. C., Krueger N., Nisbet D. J. (2009): Evaluation of the bacterial diversity in cecal contents of laying hens fed various molting diets by using bacterial tag-encoded FLX amplicon pyrosequencing. Poultry Science, 88, 298-302  https://doi.org/10.3382/ps.2008-00222
 
Caporaso J Gregory, Kuczynski Justin, Stombaugh Jesse, Bittinger Kyle, Bushman Frederic D, Costello Elizabeth K, Fierer Noah, Peña Antonio Gonzalez, Goodrich Julia K, Gordon Jeffrey I, Huttley Gavin A, Kelley Scott T, Knights Dan, Koenig Jeremy E, Ley Ruth E, Lozupone Catherine A, McDonald Daniel, Muegge Brian D, Pirrung Meg, Reeder Jens, Sevinsky Joel R, Turnbaugh Peter J, Walters William A, Widmann Jeremy, Yatsunenko Tanya, Zaneveld Jesse, Knight Rob (2010): QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335-336  https://doi.org/10.1038/nmeth.f.303
 
Carmody Rachel N., Gerber Georg K., Luevano Jesus M., Gatti Daniel M., Somes Lisa, Svenson Karen L., Turnbaugh Peter J. (2015): Diet Dominates Host Genotype in Shaping the Murine Gut Microbiota. Cell Host & Microbe, 17, 72-84  https://doi.org/10.1016/j.chom.2014.11.010
 
Cole J. R. (): The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Research, 31, 442-443  https://doi.org/10.1093/nar/gkg039
 
Daniel Hannelore, Gholami Amin Moghaddas, Berry David, Desmarchelier Charles, Hahne Hannes, Loh Gunnar, Mondot Stanislas, Lepage Patricia, Rothballer Michael, Walker Alesia, Böhm Christoph, Wenning Mareike, Wagner Michael, Blaut Michael, Schmitt-Kopplin Philippe, Kuster Bernhard, Haller Dirk, Clavel Thomas (2013): High-fat diet alters gut microbiota physiology in mice. The ISME Journal, 8, 295-308  https://doi.org/10.1038/ismej.2013.155
 
Danzeisen Jessica L., Kim Hyeun Bum, Isaacson Richard E., Tu Zheng Jin, Johnson Timothy J., Parkinson John (2011): Modulations of the Chicken Cecal Microbiome and Metagenome in Response to Anticoccidial and Growth Promoter Treatment. PLoS ONE, 6, e27949-  https://doi.org/10.1371/journal.pone.0027949
 
Doré Joël, Blottière Hervé (2015): The influence of diet on the gut microbiota and its consequences for health. Current Opinion in Biotechnology, 32, 195-199  https://doi.org/10.1016/j.copbio.2015.01.002
 
Faith J. J., Guruge J. L., Charbonneau M., Subramanian S., Seedorf H., Goodman A. L., Clemente J. C., Knight R., Heath A. C., Leibel R. L., Rosenbaum M., Gordon J. I. (2013): The Long-Term Stability of the Human Gut Microbiota. Science, 341, 1237439-1237439  https://doi.org/10.1126/science.1237439
 
Flint Harry J., Scott Karen P., Duncan Sylvia H., Louis Petra, Forano Evelyne (2014): Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3, 289-306  https://doi.org/10.4161/gmic.19897
 
Glávits Róbert, Ivanics Éva, Thuma Ákos, Kaszanyitzky Éva, Samu Péterné, Ursu Krisztina, Dencső László, Dán Ádám (2011): Typhlocolitis associated with spirochaetes in duck flocks. Avian Pathology, 40, 23-31  https://doi.org/10.1080/03079457.2010.534128
 
Gong J., Yu H., Liu T., Gill J.J., Chambers J.R., Wheatcroft R., Sabour P.M. (2008): Effects of zinc bacitracin, bird age and access to range on bacterial microbiota in the ileum and caeca of broiler chickens. Journal of Applied Microbiology, 104, 1372-1382  https://doi.org/10.1111/j.1365-2672.2007.03699.x
 
Kohl Kevin D. (2012): Diversity and function of the avian gut microbiota. Journal of Comparative Physiology B, 182, 591-602  https://doi.org/10.1007/s00360-012-0645-z
 
Ley R. E., Hamady M., Lozupone C., Turnbaugh P. J., Ramey R. R., Bircher J. S., Schlegel M. L., Tucker T. A., Schrenzel M. D., Knight R., Gordon J. I. (2008): Evolution of Mammals and Their Gut Microbes. Science, 320, 1647-1651  https://doi.org/10.1126/science.1155725
 
Lu J., Santo Domingo J. W., Hill S., Edge T. A. (2009): Microbial Diversity and Host-Specific Sequences of Canada Goose Feces. Applied and Environmental Microbiology, 75, 5919-5926  https://doi.org/10.1128/AEM.00462-09
 
Mappley Luke J., La Ragione Roberto M., Woodward Martin J. (2014): Brachyspira and its role in avian intestinal spirochaetosis. Veterinary Microbiology, 168, 245-260  https://doi.org/10.1016/j.vetmic.2013.11.019
 
Matsui Hiroki, Kato Yuko, Chikaraishi Tohru, Moritani Masanori, Ban-Tokuda Tomomi, Wakita Masaaki (2010): Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library and detection of novel Fibrobacter species. Anaerobe, 16, 83-93  https://doi.org/10.1016/j.anaerobe.2009.07.005
 
McWhorter Todd J., Caviedes-Vidal Enrique, Karasov William H. (2009): The integration of digestion and osmoregulation in the avian gut. Biological Reviews, 84, 533-565  https://doi.org/10.1111/j.1469-185X.2009.00086.x
 
Mirpuri Julie, Raetz Megan, Sturge Carolyn R, Wilhelm Cara L, Benson Alicia, Savani Rashmin C, Hooper Lora V, Yarovinsky Felix (2014): Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes, 5, 28-39  https://doi.org/10.4161/gmic.26489
 
Nicholson J. K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S. (2012): Host-Gut Microbiota Metabolic Interactions. Science, 336, 1262-1267  https://doi.org/10.1126/science.1223813
 
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H., Robinson C. J., Sahl J. W., Stres B., Thallinger G. G., Van Horn D. J., Weber C. F. (2009): Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology, 75, 7537-7541  https://doi.org/10.1128/AEM.01541-09
 
J Scupham Alexandra, Patton Toni G., Bent Elizabeth, Bayles Darrell O. (2008): Comparison of the Cecal Microbiota of Domestic and Wild Turkeys. Microbial Ecology, 56, 322-331  https://doi.org/10.1007/s00248-007-9349-4
 
Semova Ivana, Carten Juliana D., Stombaugh Jesse, Mackey Lantz C., Knight Rob, Farber Steven A., Rawls John F. (2012): Microbiota Regulate Intestinal Absorption and Metabolism of Fatty Acids in the Zebrafish. Cell Host & Microbe, 12, 277-288  https://doi.org/10.1016/j.chom.2012.08.003
 
Sergeant Martin J., Constantinidou Chrystala, Cogan Tristan A., Bedford Michael R., Penn Charles W., Pallen Mark J., Parkinson John (2014): Extensive Microbial and Functional Diversity within the Chicken Cecal Microbiome. PLoS ONE, 9, e91941-  https://doi.org/10.1371/journal.pone.0091941
 
Singh P., Karimi A., Devendra K., Waldroup P. W., Cho K. K., Kwon Y. M. (2012): Influence of penicillin on microbial diversity of the cecal microbiota in broiler chickens. Poultry Science, 92, 272-276  https://doi.org/10.3382/ps.2012-02603
 
Stanley Dragana, Denman Stuart E., Hughes Robert J., Geier Mark S., Crowley Tamsyn M., Chen Honglei, Haring Volker R., Moore Robert J. (2012): Intestinal microbiota associated with differential feed conversion efficiency in chickens. Applied Microbiology and Biotechnology, 96, 1361-1369  https://doi.org/10.1007/s00253-011-3847-5
 
Swayne D.E., McLaren A.J. (1997): Avian intestinal Spirochaetes and avian intestinal spirochaetosis. In: Hampson D.J. and Stanton T.B. (eds): Intestinal Spirochaetes in Domestic Animals and Humans. CAB International, Wallingford, UK, 267–300.
 
Vasaï Florian, Brugirard Ricaud Karine, Bernadet Marie Dominique, Cauquil Laurent, Bouchez Olivier, Combes Sylvie, Davail Stéphane (2014): Overfeeding and genetics affect the composition of intestinal microbiota in Anas platyrhynchos (Pekin) and Cairina moschata (Muscovy) ducks. FEMS Microbiology Ecology, 87, 204-216  https://doi.org/10.1111/1574-6941.12217
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti