Lead induced alterations in rabbit spermatozoa motility and morphology in vitro

https://doi.org/10.17221/58/2015-CJASCitation:Krockova J., Roychoudhury S., Slanina T., Formicki G., Binkowski L.J., Ondruska L., Lukac N., Kovacova R., Stawarz R., Massanyi P. (2016): Lead induced alterations in rabbit spermatozoa motility and morphology in vitro. Czech J. Anim. Sci., 61: 391-406.
download PDF
The aim of this in vitro study was to determine the effect of lead chloride (PbCl2) on rabbit spermatozoa motility and morphology. Lead concentrations in the medium ranged between 0.45 and 11.17 μg/ml; incubation time was 240 min (analyzed immediately after Pb addition followed by 30, 60, 120, 180, and 240 min), and temperatures of the culture environment were 22°C (laboratory), 4°C (refrigerator), and 37°C (incubator). Results were compared with a control group without Pb addition. After 30 min of culture at 22°C, a negative effect of Pb was noted as spermatozoa motility significantly decreased in groups with higher concentrations. After 120 and 240 min, a dose-dependent effect on spermatozoa motility was noted. At 4°C, spermatozoa motility analysis detected no significant differences between any of the experimental groups and control. At 37°C, a negative effect of Pb incubation on motility was detected at Times 30, 60, 120, 180, and 240 in groups with high concentrations. At Times 120, 180, and 240 a significant decrease in spermatozoa motility was also noted in all experimental groups in comparison to control. The analysis of pathological spermatozoa at Time 240 revealed an increasing trend of morphological abnormalities after incubation with Pb. Across three temperature regimes an increase of morphological changes was noted, particularly in the group with the highest Pb concentration. The predominant morphological abnormalities were knob twisted flagellum, flagellum ball, separated flagellum, and broken flagellum. Knob twisted flagella represented the most frequent pathological changes in the experimental group with the highest Pb concentration. Results suggest that the inhibitory effect of Pb on spermatozoa motility parameters depends on the concentration, incubation time, as well as environmental temperature during incubation. Furthermore, a negative effect of Pb in vitro on spermatozoa morphology indicates possible reproductive problems under in vivo conditions, too.
References:
Alhassan Abdul, Mabrouk Mohamed, Idris Ramatu, Salawu Emmanuel, Oyerinde Abiodun, Bauchi Zainab (2010): Aqueous Extract of <i>Juglans Nigra</i> Prevents Lead Induced Testicular Toxicity in Rats. Macedonian Journal of Medical Sciences, 3, 289-294 https://doi.org/10.3889/MJMS.1857-5773.2010.0109
 
Reshma Anjum M., Sainath S.B., Suneetha Y., Sreenivasula Reddy P. (2011): Lead acetate induced reproductive and paternal mediated developmental toxicity in rats. Ecotoxicology and Environmental Safety, 74, 793-799 https://doi.org/10.1016/j.ecoenv.2010.10.044
 
Apostoli P., Kiss P., Porru S., Bonde J. P., Vanhoorne M. (1998): Male reproductive toxicity of lead in animals and humans. ASCLEPIOS Study Group. Occupational and Environmental Medicine, 55, 364-374 https://doi.org/10.1136/oem.55.6.364
 
Batarseh Layla I., Welsh Michael J., Brabec Michael J. (1986): Effect of lead acetate on Sertoli cell lactate production and protein synthesis in vitro. Cell Biology and Toxicology, 2, 283-292 https://doi.org/10.1007/BF00122696
 
Castellanos Pilar, del Olmo Enrique, Fernández-Santos M. Rocío, Rodríguez-Estival Jaime, Garde J. Julián, Mateo Rafael (2015): Increased chromatin fragmentation and reduced acrosome integrity in spermatozoa of red deer from lead polluted sites. Science of The Total Environment, 505, 32-38 https://doi.org/10.1016/j.scitotenv.2014.09.087
 
Formicki G., Gren A., Stawarz R., Binkowski L. (2014): Basic and Environmental Toxicology. Pedagogical University Press, Krakow, Poland.
 
Franken D. R., van Wyk R., Stoumann C., Avari K. (2011): Temperature controlled centrifugation improves sperm retrieval. Andrologia, 43, 217-221 https://doi.org/10.1111/j.1439-0272.2010.01136.x
 
Ghaffari M.A., Motlagh B. (2011): In vitro effect of lead, silver, tin, mercury, indium and bismuth on human sperm creatine kinase activity: a presumable mechanism for men infertility. Iranian Biomedical Journal, 15, 38–43.
 
Graca A., Ramalho-Santos J., de Lourdes Pereira M. (2004): Effect of lead chloride on spermatogenesis and sperm parameters in mice. Asian Journal of Andrology, 6, 237–241.
 
Hernández-Ochoa I., Sánchez-Gutiérrez M., Solís-Heredia M.J., Quintanilla-Vega B. (2006): Spermatozoa nucleus takes up lead during the epididymal maturation altering chromatin condensation. Reproductive Toxicology, 21, 171-178 https://doi.org/10.1016/j.reprotox.2005.07.015
 
Hsu Ping-Chi, Chang Ho-Yuan, Guo Yueliang Leon, Liu Yen-Chun, Shih Tung-Sheng (2009): Effect of smoking on blood lead levels in workers and role of reactive oxygen species in lead-induced sperm chromatin DNA damage. Fertility and Sterility, 91, 1096-1103 https://doi.org/10.1016/j.fertnstert.2008.01.005
 
Kolesarova Adriana, Roychoudhury Shubhadeep, Slivkova Jana, Sirotkin Alexander, Capcarova Marcela, Massanyi Peter (2010): In vitro study on the effects of lead and mercury on porcine ovarian granulosa cells. Journal of Environmental Science and Health, Part A, 45, 320-331 https://doi.org/10.1080/10934520903467907
 
Krockova J., Massanyi P., Toman R., Danko J., Roychoudhury S. (2012): In vivo and in vitro effect of bendiocarb on rabbit testicular structure and spermatozoa motility. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 47, 1301–1311.
 
Lerda Daniel (1992): Study of sperm characteristics in persons occupationally exposed to lead. American Journal of Industrial Medicine, 22, 567-571 https://doi.org/10.1002/ajim.4700220411
 
Marko-WorłOwska Maria, Chrzan Anna, Łaciak Tomasz (2011): Scots pine bark, topsoil and pedofauna as indicators of transport pollutions in terrestrial ecosystems. Journal of Environmental Science and Health, Part A, 46, 138-148 https://doi.org/10.1080/10934529.2010.500896
 
Massanyi P., Trandzik J., Nad P., Toman R., Skalicka M., Korenekova B. (2003): Seminal concentrations of trace elements in various animals and their correlations. Asian Journal of Andrology, 5, 101–104.
 
Massanyi P., Trandzik J., Nad P., Korenekova B., Skalicka M., Toman R., Lukac N., Halo M., Strapak P. (2004): Concentration of copper, iron, zinc, cadmium, lead, and nickel in bull and ram semen and relation to the occurrence of pathological spermatozoa. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 39, 3005–3014.
 
Massanyi Peter, Lukac Norbert, Makarevich Alexander V., Chrenek Peter, Forgacs Zsolt, Zakrzewski Marian, Stawarz Robert, Toman Robert, Lazor Peter, Flesarova Slavka (2007): Lead-induced alterations in rat kidneys and testes in vivo. Journal of Environmental Science and Health, Part A, 42, 671-676 https://doi.org/10.1080/10934520701244474
 
Moorman William J., Skaggs Stephen R., Clark John C., Turner Terry W., Sharpnack Douglas D., Murrell James A., Simon Stephen D., Chapin Robert E., Schrader Steven M. (1998): Male Reproductive Effects of Lead, Including Species Extrapolation for the Rabbit Model 11This work was supported in part by IA # YO1-ES-40266, from NIEHS, National Toxicology Program.. Reproductive Toxicology, 12, 333-346 https://doi.org/10.1016/S0890-6238(98)00010-0
 
Naha N., Manna B. (2007): Mechanism of lead induced effects on human spermatozoa after occupational exposure. Kathmandu University Medical Journal, 5, 85–94.
 
Pandya C., Pillai P., Nampoothiri L. P., Bhatt N., Gupta S., Gupta S. (2012): Effect of lead and cadmium co-exposure on testicular steroid metabolism and antioxidant system of adult male rats. Andrologia, 44, 813-822 https://doi.org/10.1111/j.1439-0272.2010.01137.x
 
Roychoudhury S., Massanyi P. (2014): Introduction to Male Reproduction and Toxicity. Slovak University of Agriculture Press, Nitra, Slovak Republic.
 
Sainath S.B., Meena R., Supriya Ch., Reddy K. Pratap, Reddy P. Sreenivasula (2011): Protective role of Centella asiatica on lead-induced oxidative stress and suppressed reproductive health in male rats. Environmental Toxicology and Pharmacology, 32, 146-154 https://doi.org/10.1016/j.etap.2011.04.005
 
Shafai Adel El, Zohdy Nahed, Mulla Khaled El, Hassan Manal, Morad Noha (2011): Light and electron microscopic study of the toxic effect of prolonged lead exposure on the seminiferous tubules of albino rats and the possible protective effect of ascorbic acid. Food and Chemical Toxicology, 49, 734-743 https://doi.org/10.1016/j.fct.2010.11.033
 
Slivkova Jana, Popelkova Miroslava, Massanyi Peter, Toporcerova Silvia, Stawarz Robert, Formicki Grzegorz, Lukac Norbert, Putała Aldona, Guzik Marek (2009): Concentration of trace elements in human semen and relation to spermatozoa quality. Journal of Environmental Science and Health, Part A, 44, 370-375 https://doi.org/10.1080/10934520802659729
 
Tchounwou P.B., Yedjou C.G., Patlolla A.K., Sutton D.J. (2012): Heavy metals toxicity and the environment. Molecular, Clinical and Environmental Toxicology, 101 (Experientia Supplementum), 133–164.
 
Toman R., Massanyi P., Adamkovicova M., Lukac N., Cabaj M., Martiniakova M. (2012): Quantitative histological analysis of the mouse testis after the long-term administration of nickel in feed. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 47, 1272–1279.
 
Tvrda E., Knazicka Z., Lukacova J., Schneidgenova M., Goc Z., Gren A., Szabo C., Massanyi P., Lukac N. (2013): The impact of lead and cadmium on selected motility, prooxidant and antioxidant parameters of bovine seminal plasma and spermatozoa. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 48, 1292–1300.
 
Wang Lu, Xun Pengcheng, Zhao Yang, Wang Xinru, Qian Ling, Chen Feng (2008): Effects of Lead Exposure on Sperm Concentrations and Testes Weight in Male Rats: A Meta-regression Analysis. Journal of Toxicology and Environmental Health, Part A, 71, 454-463 https://doi.org/10.1080/15287390701839331
 
Wang Xiaoxu, Wang Man, Dong Wei, Li Yachen, Zheng Xiaomei, Piao Fengyuan, Li Sheng (2013): Subchronic exposure to lead acetate inhibits spermatogenesis and downregulates the expression of Ddx3y in testis of mice. Reproductive Toxicology, 42, 242-250 https://doi.org/10.1016/j.reprotox.2013.10.003
 
Wieczorek-Dąbrowska Marta, Tomza-Marciniak Agnieszka, Pilarczyk Bogumiła, Balicka-Ramisz Aleksandra (2013): Roe and red deer as bioindicators of heavy metals contamination in north-western Poland. Chemistry and Ecology, 29, 100-110 https://doi.org/10.1080/02757540.2012.711322
 
download PDF

© 2019 Czech Academy of Agricultural Sciences