Effect of the FGF2 SNP11646 on milk production and fertility traits of Holstein cattle

https://doi.org/10.17221/61/2015-CJASCitation:Brzáková M., Hosnedlová B., Svitáková A., Vernerová K., Veselá Z., Čítek J. (2016): Effect of the FGF2 SNP11646 on milk production and fertility traits of Holstein cattle. Czech J. Anim. Sci., 61: 377-382.
download PDF
The objective of this study was to estimate the effect of a single-nucleotide polymorphism (SNP11646) in the FGF2 (Fibroblast Growth Factor 2) gene on the deregressed proof of breeding values (DRP) of Holstein sires (n = 149) for milk traits (milk yield, fat yield and percentage, and protein yield and percentage) and fertility (relative breeding value for own fertility – conception rate of heifers, cows, all females inseminated by the sperm of the sire; relative breeding value for conception rate of daughters – heifers, cows, all females). The differences between genotypes for milk performance were not significant. The lowest DRP for milk performance were found for AA sires. For fertility, sires with this genotype had the best values both for the maternal genetic effect (conception rate of the daughters) and for the direct genetic effect (fertility of the sire). For conception rate of the daughters, in some cases, the differences reached the threshold of significance. Thus, the results indicate coincidently with other studies the potential opposing effects on milk performance and fertility. FGF2 SNP11646 is still of interest for future cattle breeding studies.
Bauer J., Přibyl J., Vostrý L. (): Contribution of domestic and Interbull records to reliabilities of single-step genomic breeding values in dairy cattle. Czech Journal of Animal Science, 60, 263-267  https://doi.org/10.17221/8240-CJAS
de Ruijter-Villani Marta, van Boxtel Paula R.M., Stout Tom A.E. (2013): Fibroblast growth factor-2 expression in the preimplantation equine conceptus and endometrium of pregnant and cyclic mares. Theriogenology, 80, 979-989  https://doi.org/10.1016/j.theriogenology.2013.07.024
Dobson H., Walker S.L., Morris M.J., Routly J.E., Smith R.F. (2007): Why is it getting more difficult to successfully artificially inseminate dairy cows? Animal, 2, 1104–1111.
Druet T., Fritz S., Boussaha M., Ben-Jemaa S., Guillaume F., Derbala D., Zelenika D., Lechner D., Charon C., Boichard D., Gut I. G., Eggen A., Gautier M. (2008): Fine Mapping of Quantitative Trait Loci Affecting Female Fertility in Dairy Cattle on BTA03 Using a Dense Single-Nucleotide Polymorphism Map. Genetics, 178, 2227-2235  https://doi.org/10.1534/genetics.107.085035
Fields Sarah D., Hansen Peter J., Ealy Alan D. (2011): Fibroblast growth factor requirements for in vitro development of bovine embryos. Theriogenology, 75, 1466-1475  https://doi.org/10.1016/j.theriogenology.2010.12.007
Guillaume F., Gautier M., Ben Jemaa S., Fritz S., Eggen A., Boichard D., Druet T. (2007): Refinement of two female fertility QTL using alternative phenotypes in French Holstein dairy cattle. Animal Genetics, 38, 72-74  https://doi.org/10.1111/j.1365-2052.2006.01542.x
Hironaka T., Ohishi H., Masaki T. (1997): Identification and Partial Purification of a Basic Fibroblast Growth Factor-Like Growth Factor Derived from Bovine Colostrum. Journal of Dairy Science, 80, 488-495  https://doi.org/10.3168/jds.S0022-0302(97)75961-7
Jackson D., Bresnick J., Rosewell I., Crafton T., Poulsom R., Stamp G., Dickson C. (1997): Fibroblast growth factor receptor signaling has a role in lobuloalveolar development of the mammary gland. Journal of Cell Science, 110, 1261–1268.
Khatib H., Maltecca C., Monson R. L., Schutzkus V., Wang X., Rutledge J. J. (2008): The fibroblast growth factor 2 gene is associated with embryonic mortality in cattle. Journal of Animal Science, 86, 2063-2067  https://doi.org/10.2527/jas.2007-0791
Khatib H., Monson R.L., Huang W., Khatib R., Schutzkus V., Khateeb H., Parrish J.J. (2010): Short communication: Validation of in vitro fertility genes in a Holstein bull population. Journal of Dairy Science, 93, 2244-2249  https://doi.org/10.3168/jds.2009-2805
Larson R. C., Ignotz G. G., Currie W. B. (1992): Transforming growth factor ? and basic fibroblast growth factor synergistically promote early bovine embryo development during the fourth cell cycle. Molecular Reproduction and Development, 33, 432-435  https://doi.org/10.1002/mrd.1080330409
Martal J., ChÊne Nicole, Camous Sylvaine, Huynh L., Lantier F., Hermier Paloma, L'Haridon R., Charpigny G., Charlier Madia, Chaouat G. (1997): Recent developments and potentialities for reducing embryo mortality in ruminants: the role of IFN-t and other cytokines in early pregnancy. Reproduction, Fertility and Development, 9, 355-  https://doi.org/10.1071/R96083
Michael Donna D., Alvarez Idania M., Ocón Olga M., Powell Anne M., Talbot Neil C., Johnson Sally E., Ealy Alan D. (2006): Fibroblast Growth Factor-2 Is Expressed by the Bovine Uterus and Stimulates Interferon-τ Production in Bovine Trophectoderm. Endocrinology, 147, 3571-3579  https://doi.org/10.1210/en.2006-0234
Oikonomou G., Michailidis G., Kougioumtzis A., Avdi M., Banos G. (2011): Effect of polymorphisms at the STAT5A and FGF2 gene loci on reproduction, milk yield and lameness of Holstein cows. Research in Veterinary Science, 91, 235-239  https://doi.org/10.1016/j.rvsc.2011.01.009
Ornitz D.M., Itoh N. (2001): Fibroblast growth factors. Genome Biology, 2, 3005.1–3005.12.
Portela V. M., Machado M., Buratini J., Zamberlam G., Amorim R. L., Goncalves P., Price C. A. (): Expression and Function of Fibroblast Growth Factor 18 in the Ovarian Follicle in Cattle. Biology of Reproduction, 83, 339-346  https://doi.org/10.1095/biolreprod.110.084277
Reynolds L. P. (2001): Angiogenesis in the Placenta. Biology of Reproduction, 64, 1033-1040  https://doi.org/10.1095/biolreprod64.4.1033
ROYAL M., MANN G.E., FLINT A.P.F. (2000): Strategies for Reversing the Trend Towards Subfertility in Dairy Cattle. The Veterinary Journal, 160, 53-60  https://doi.org/10.1053/tvjl.1999.0450
Rozzi Paola, Schaeffer L.R., Burnside E.B., Schlote Werner (1990): International evaluation of Holstein-Friesian dairy sires from three countries. Livestock Production Science, 24, 15-28  https://doi.org/10.1016/0301-6226(90)90028-5
Rychtarova J., Sztankoova Z., Kyselova J., Zink V., Stipkova M., Vacek M., Stolc L. (2014): Effect of DGAT1, BTN1A1, OLR1, and STAT1 genes on milk production and reproduction traits in the Czech Fleckvieh breed. Czech Journal of Animal Science, 59, 45–53.
Wang X., Maltecca C., Tal-Stein R., Lipkin E., Khatib H. (2008): Association of Bovine Fibroblast Growth Factor 2 (FGF2) Gene with Milk Fat and Productive Life: An Example of the Ability of the Candidate Pathway Strategy to Identify Quantitative Trait Genes. Journal of Dairy Science, 91, 2475-2480  https://doi.org/10.3168/jds.2007-0877
Wang X., Schutzkus V., Huang W., Rosa G. J. M., Khatib H. (2009): Analysis of segregation distortion and association of the bovine FGF2 with fertilization rate and early embryonic survival. Animal Genetics, 40, 722-728  https://doi.org/10.1111/j.1365-2052.2009.01904.x
Xie Ming, McCoski Sarah R., Johnson Sally E., Rhoads Michelle L., Ealy Alan D. (2015): Combinatorial effects of epidermal growth factor, fibroblast growth factor 2 and insulin-like growth factor 1 on trophoblast cell proliferation and embryogenesis in cattle. Reproduction, Fertility and Development, , -  https://doi.org/10.1071/RD15226
Yang Q.E., Fields S.D., Zhang K., Ozawa M., Johnson S.E., Ealy A.D. (2011a): Fibroblast growth factor 2 promotes primitive endoderm development in bovine blastocyst outgrowths. Biology of Reproduction, 85, 946–953.
Yang Q.E., Giassetti M.I., Ealy A.D. (2011b): Fibroblast growth factors activate mitogen-activated protein kinase pathways to promote migration in ovine trophoblast cells. Reproduction, 141, 707–714.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti