Genomic response to natural selection within alpine cattle breeds

 

https://doi.org/10.17221/62/2017-CJASCitation:Moravčíková N., Simčič M., Mészáros G., Sölkner J., Kukučková V., Vlček M., Trakovická A., Kadlečík O., Kasarda R. (2018): Genomic response to natural selection within alpine cattle breeds  . Czech J. Anim. Sci., 63: 136-143.
download PDF

The aim of this study was to analyse the genomic regions that have been target of natural selection with respect to identifying the loci responsible mainly for fitness traits across six alpine cattle breeds. The genome-wide scan for selection signatures was performed using genotyping data from totally 465 animals. After applying data quality control, overall 35 873 single nucleotide polymorphisms were useable for the subsequent analysis. The detection of genomic regions affected by natural selection was carried out using the approach of principal component analysis. The analysis was based on the assumption that markers extremely related to the population structure are also candidates for local adaptation potential of the population. Based on the expected false discovery rate equal to 10% up to 1138 loci were identified as outliers. The strongest signals of selection were found in genomic regions on BTA 1, 2, 3, 6, 9, 11, 13, and 22. Most genes located in the identified regions have been previously associated with immunity system as well as body growth and muscle formation that mainly reflect the pressure of both natural and artificial selection in respect to adaptation of analysed breeds to the local environmental conditions. The results also signalized that those regions represent a correlated selection response in way to maintain the fitness of analysed breeds.

References:
Akey J. M. (): Interrogating a High-Density SNP Map for Signatures of Natural Selection. Genome Research, 12, 1805-1814  https://doi.org/10.1101/gr.631202
 
Druet T., Pérez-Pardal L., Charlier C., Gautier M. (2013): Identification of large selective sweeps associated with major genes in cattle. Animal Genetics, 44, 758-762  https://doi.org/10.1111/age.12073
 
Duforet-Frebourg Nicolas, Bazin Eric, Blum Michael G.B. (2014): Genome Scans for Detecting Footprints of Local Adaptation Using a Bayesian Factor Model. Molecular Biology and Evolution, 31, 2483-2495  https://doi.org/10.1093/molbev/msu182
 
Duforet-Frebourg Nicolas, Luu Keurcien, Laval Guillaume, Bazin Eric, Blum Michael G.B. (2016): Detecting Genomic Signatures of Natural Selection with Principal Component Analysis: Application to the 1000 Genomes Data. Molecular Biology and Evolution, 33, 1082-1093  https://doi.org/10.1093/molbev/msv334
 
Ferenčaković Maja, Sölkner Johann, Curik Ino (2013): Estimating autozygosity from high-throughput information: effects of SNP density and genotyping errors. Genetics Selection Evolution, 45, 42-  https://doi.org/10.1186/1297-9686-45-42
 
Fischer Martin C., Foll Matthieu, Heckel Gerald, Excoffier Laurent, Singh Nadia (2014): Continental-Scale Footprint of Balancing and Positive Selection in a Small Rodent (Microtus arvalis). PLoS ONE, 9, e112332-  https://doi.org/10.1371/journal.pone.0112332
 
Flori Laurence, Fritz Sébastien, Jaffrézic Florence, Boussaha Mekki, Gut Ivo, Heath Simon, Foulley Jean-Louis, Gautier Mathieu, Harpending Henry (2009): The Genome Response to Artificial Selection: A Case Study in Dairy Cattle. PLoS ONE, 4, e6595-  https://doi.org/10.1371/journal.pone.0006595
 
Luo Junjie, Song Zhiyuan, Yu Shengli, Cui Dan, Wang Benli, Ding Fangrong, Li Song, Dai Yunping, Li Ning, Isalan Mark (2014): Efficient Generation of Myostatin (MSTN) Biallelic Mutations in Cattle Using Zinc Finger Nucleases. PLoS ONE, 9, e95225-  https://doi.org/10.1371/journal.pone.0095225
 
Luu Keurcien, Bazin Eric, Blum Michael G. B. (2017): pcadapt : an R package to perform genome scans for selection based on principal component analysis. Molecular Ecology Resources, 17, 67-77  https://doi.org/10.1111/1755-0998.12592
 
Mallard B.A., Emam M., Paibomesai M., Thomson-Crispi K., Wagter-Lesperance L. (2015): Genetic selection of cattle for improved immunity and health. Japanese Journal of Veterinary Research, 63, S37–S44.
 
Mancini Giordano, Gargani Maria, Chillemi Giovanni, Nicolazzi Ezequiel Luis, Marsan Paolo Ajmone, Valentini Alessio, Pariset Lorraine (2014): Signatures of selection in five Italian cattle breeds detected by a 54K SNP panel. Molecular Biology Reports, 41, 957-965  https://doi.org/10.1007/s11033-013-2940-5
 
Martins Helena, Caye Kevin, Luu Keurcien, Blum Michael G. B., François Olivier (2016): Identifying outlier loci in admixed and in continuous populations using ancestral population differentiation statistics. Molecular Ecology, 25, 5029-5042  https://doi.org/10.1111/mec.13822
 
McTavish E. J., Decker J. E., Schnabel R. D., Taylor J. F., Hillis D. M. (2013): New World cattle show ancestry from multiple independent domestication events. Proceedings of the National Academy of Sciences, 110, E1398-E1406  https://doi.org/10.1073/pnas.1303367110
 
Meredith Brian K., Berry Donagh P., Kearney Francis, Finlay Emma K., Fahey Alan G., Bradley Daniel G., Lynn David J. (2013): A genome-wide association study for somatic cell score using the Illumina high-density bovine beadchip identifies several novel QTL potentially related to mastitis susceptibility. Frontiers in Genetics, 4, -  https://doi.org/10.3389/fgene.2013.00229
 
Mészáros G., Kadlečík O., Kasarda R., Sölkner J. (2018): Analysis of longevity in the Slovak Pinzgau population – extension to the animal model. Czech Journal of Animal Science, 58, 289-295  https://doi.org/10.17221/6858-CJAS
 
Parra-Bracamonte Gaspar Manuel, Martínez-González Juan C., Sifuentes-Rincón Ana M., Moreno-Medina Victor R., Ortega-Rivas Eligio (2015): Meat tenderness genetic polymorphisms occurrence and distribution in five Zebu breeds in Mexico. Electronic Journal of Biotechnology, 18, 365-367  https://doi.org/10.1016/j.ejbt.2015.07.002
 
Randhawa Imtiaz A. S., Khatkar Mehar S., Thomson Peter C., Raadsma Herman W., Barendse William (2016): A Meta-Assembly of Selection Signatures in Cattle. PLOS ONE, 11, e0153013-  https://doi.org/10.1371/journal.pone.0153013
 
Seabury C. M., Seabury P. M., Decker J. E., Schnabel R. D., Taylor J. F., Womack J. E. (2010): Diversity and evolution of 11 innate immune genes in Bos taurus taurus and Bos taurus indicus cattle. Proceedings of the National Academy of Sciences, 107, 151-156  https://doi.org/10.1073/pnas.0913006107
 
Simcic M., Smetko A., Solkner J., Seichter D., Gorjanc G., Kompan D., Medugorac I. (2015): Recovery of native genetic background in admixed populations using haplotypes, phenotypes, and pedigree information – using Cika cattle as a case breed. PLoS One, 10, e123253.
 
Stella A., Ajmone-Marsan P., Lazzari B., Boettcher P. (2010): Identification of Selection Signatures in Cattle Breeds Selected for Dairy Production. Genetics, 185, 1451-1461  https://doi.org/10.1534/genetics.110.116111
 
Storey John D. (2002): A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 479-498  https://doi.org/10.1111/1467-9868.00346
 
Strapák P., Juhás P., Strapáková E., Halo M. (2010): Relation of the length of productive life and the body conformation traits in Slovak Simmental breed. Archives Animal Breeding, 53, 393-402  https://doi.org/10.5194/aab-53-393-2010
 
Suarez-Vega A., Gutierrez-Gil B., Klopp C., Robert-Granie C., Tosser-Klopp G., Arranz J.J. (2015): Characterization and comparative analysis of the milk transcriptome in two dairy sheep breeds using RNA sequencing. Scientific Reports, 5, Article No. 18399.
 
Taberlet Pierre, Coissac Eric, Pansu Johan, Pompanon François (2011): Conservation genetics of cattle, sheep, and goats. Comptes Rendus Biologies, 334, 247-254  https://doi.org/10.1016/j.crvi.2010.12.007
 
Thompson-Crispi Kathleen A, Sargolzaei Mehdi, Ventura Ricardo, Abo-Ismail Mohammed, Miglior Filippo, Schenkel Flavio, Mallard Bonnie A (2014): A genome-wide association study of immune response traits in Canadian Holstein cattle. BMC Genomics, 15, 559-  https://doi.org/10.1186/1471-2164-15-559
 
Urbinati Ismael, Stafuzza Nedenia Bonvino, Oliveira Marcos Túlio, Chud Tatiane Cristina Seleguim, Higa Roberto Hiroshi, Regitano Luciana Correia de Almeida, de Alencar Maurício Mello, Buzanskas Marcos Eli, Munari Danísio Prado (2016): Selection signatures in Canchim beef cattle. Journal of Animal Science and Biotechnology, 7, -  https://doi.org/10.1186/s40104-016-0089-5
 
Weir B. S. (2005): Measures of human population structure show heterogeneity among genomic regions. Genome Research, 15, 1468-1476  https://doi.org/10.1101/gr.4398405
 
Zhang Bao, Chen Hong, Guo Yikun, Zhang Liangzhi, Zhao Miao, Lan Xianyong, Zhang Chunlei, Pan Chuanying, Hu Shenrong, Wang Juqiang, Lei Chuzhao (2009): Associations of polymorphism within the GHSR gene with growth traits in Nanyang cattle. Molecular Biology Reports, 36, 2259-2263  https://doi.org/10.1007/s11033-008-9442-x
 
Zhao Fuping, McParland Sinead, Kearney Francis, Du Lixin, Berry Donagh P (2015): Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genetics Selection Evolution, 47, -  https://doi.org/10.1186/s12711-015-0127-3
 
download PDF

© 2019 Czech Academy of Agricultural Sciences