A summary of feed additives, intestinal health and intestinal alkaline phosphatase in piglet nutrition

https://doi.org/10.17221/70/2020-CJASCitation:

Genova J.L., Melo A.D.B., Rupolo P.E., Carvalho S.T., Costa L.B., Carvalho P.L.O. (2020): A summary of feed additives, intestinal health and intestinal alkaline phosphatase in piglet nutrition. Czech J. Anim. Sci., 65: 281–294.

download PDF

Weaning is considered the “critical window” in the piglet’s life because it is associated with several stress factors, such as loss of contact with the mother and original litter, solid diet, environmental and structural changes, and the establishment of a new hierarchy. During this abrupt period, several events such as reduced feed intake, high morbidity, susceptibility to enteric infections and post-weaning diarrhoea are observed. The nutritional landscape of the piglet gut is modified, which can compromise the maturity of the gastrointestinal system, the stable intestinal microbiome and the active immunity developed as an indicator of intestinal health. However, with increased awareness of feed safety issues and the development of drug-resistant bacteria, the interest in producing pigs without the use of antimicrobial growth promoters (AGP) is increasing, since long-term use and therapeutic doses of AGP can contribute to the reduction of bacterial diversity and increase of inflammatory bowel disease (IBD). Thus, the most widely researched alternatives include the use of feed additives, feeding strategies, nutraceuticals/functional foods and available handling that can reduce the risk of IBD beyond basic nutritional functions. Studies have reported intestinal alkaline phosphatase as a new nutritional therapy associated with intestinal health which may be a “key additive” in the AGP replacement. In this review article, the purpose is to show some current aspects of feed additive research, addressing a concept of the “intestinal health” from different points of view and properties of alkaline phosphatase.

References:
Abasht B, Kaiser MG, Lamont SJ. Toll-like receptor gene expression in cecum and spleen of advanced intercross line chicks infected with Salmonella enterica serovar Enteritidis. Vet Immunol Immunopathol. 2008 Jun 15;123(3-4):314-23. https://doi.org/10.1016/j.vetimm.2008.02.010
 
Adewole DI, Kim IH, Nyachoti CM. Gut health of pigs: Challenge models and response criteria with a critical analysis of the effectiveness of selected feed additives – A review. Asian-Australasian J Anim Sci. 2016 Nov;29(7):909-24.  https://doi.org/10.5713/ajas.15.0795
 
Agustina H, Asyifa I, Aziz A, Hernowo BS. The role of osteocalcin and alkaline phosphatase immunohistochemistry in osteosarcoma diagnosis. Patholog Res Int. 2018 May 3;1-5. https://doi.org/10.1155/2018/6346409
 
Akiba Y, Mizumori M, Guth PH, Engel E, Kaunitz JD. Duodenal brush border intestinal alkaline phosphatase activity affects bicarbonate secretion in rats. Am J Physiol Gastrointest Liver Physiol. 2007 Dec;293(6):G1223-33. https://doi.org/10.1152/ajpgi.00313.2007
 
Akira S, Takeda K, Kaisho T. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat Immunol. 2001 Aug;2(8):675-80. https://doi.org/10.1038/90609
 
Alam SN, Yammine H, Moaven O, Ahmed R, Moss AK, Biswas B, Ghosh S. Intestinal alkaline phosphatase prevents antibiotic-induced susceptibility to enteric pathogens. Ann Surg. 2014 Apr;259(4):715-22. https://doi.org/10.1097/SLA.0b013e31828fae14
 
Anjos CM, Gois FD, Anjos CM, Rocha VS, Castro DES, Allaman IB, Silva FL, Carvalho PLO, Meneghetti C, Costa LB. Effects of dietary beta-glucans, glucomannans and mannan oligosaccharides or chlorohydroxyquinoline on the performance, diarrhea, hematological parameters, organ weight and intestinal health of weanling pigs. Livest Sci. 2019 May 1;223:39-46. https://doi.org/10.1016/j.livsci.2019.02.018
 
Bates JM, Akerlund J, Mittge E, Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007 Dec 13;2(6):371-82. https://doi.org/10.1016/j.chom.2007.10.010
 
Barba-Vidal E, Roll VFB, Castillejos L, Guerra-Ordaz AA, Manteca X, Mallo JJ, Martin-Orue SM. Response to a Salmonella Typhimurium challenge in piglets supplemented with protected sodium butyrate or Bacillus licheniformis: Effects on performance, intestinal health and behavior. Transl Anim Sci. 2017a Apr 1;1(2):186-200. https://doi.org/10.2527/tas2017.0021
 
Barba-Vidal E, Castillejos L, Lopez-Colom P, Rivero Urgell M, Moreno Munoz JA, Martin-Orue SM. Evaluation of the probiotic strain Bifidobacterium longum subsp. infantis CECT 7210 capacities to improve health status and fight digestive pathogens in a piglet model. Front Microbiol. 2017b Apr 11;8:533. https://doi.org/10.3389/fmicb.2017.00533
 
Barba-Vidal E, Martin-Orue SM, Castillejos L. Review: Are we using probiotics correctly in post-weaning piglets? Animal. 2018 Dec;12(12):2489-98. https://doi.org/10.1017/S1751731118000873
 
Bedford MR, Cowieson AJ. Exogenous enzymes and their effects on intestinal microbiology. Anim Feed Sci Tech. 2012 Apr 20;173(1-2):76-85. https://doi.org/10.1016/j.anifeedsci.2011.12.018
 
Beumer C, Wulferink M, Raaben W, Fiechter D, Brands R, Seinen W. Calf intestinal alkaline phosphatase, a novel therapeutic drug for lipopolysaccharide (LPS)-mediated diseases, attenuates LPS toxicity in mice and piglets. J Pharmacol Exp Ther. 2003 Nov;307(2):737-44. https://doi.org/10.1124/jpet.103.056606
 
Beutler B, Rietschel ET. Innate immune sensing and its roots: The story of endotoxin. Nat Rev Immunol. 2003 Feb;3(2):169-76. https://doi.org/10.1038/nri1004
 
Bischoff SC. “Gut health”: A new objective in medicine? BMC Med. 2011 Mar 14;9(1):24. https://doi.org/10.1186/1741-7015-9-24
 
Bilski J, Mazur-Bialy A, Wojcik D, Zahradnik-Bilska J, Brzozowski B, Magierowski M, Mach T, Magierowska K, Brzozowski T. The role of intestinal alkaline phosphatase in inflammatory disorders of gastrointestinal tract. Mediators Inflamm. 2017 Feb 21;1-9. https://doi.org/10.1155/2017/9074601
 
Bol-Schoenmakers M, Fiechter D, Raaben W, Hassing I, Bleumink R, Kruijswijk D, Maijoor K, Tersteeg-Zijderveld M, Brands R, Pieters R. Intestinal alkaline phosphatase contributes to the reduction of severe intestinal epithelial damage. Eur J Pharmacol. 2010 May 10;633(1-3):71-7. https://doi.org/10.1016/j.ejphar.2010.01.023
 
Brun LR, Brance ML, Lombarte M, Lupo M, Di Loreto VE, Rigalli A. Regulation of intestinal calcium absorption by luminal calcium content: Role of intestinal alkaline phosphatase. Mol Nutr Food Res. 2014 Apr;58(7):1546-51. https://doi.org/10.1002/mnfr.201300686
 
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015 Apr-Jun;28(2):203-9.
 
Celi P, Cowieson AJ, Fru-Nji F, Steinert RE, Kluenter AM, Verlhac V. Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Anim Feed Sci Technol. 2017 Dec 1;234:88-100. https://doi.org/10.1016/j.anifeedsci.2017.09.012
 
Chen KT, Malo MS, Moss AK, Zeller S, Johnson P, Ebrahimi F, Mostafa G, Alam SN, Ramasamy S, Warren HS, Hohmann EL, Hodin RA. Identification of specific targets for the gut mucosal defense factor intestinal alkaline phosphatase. Am J Physiol Gastrointest Liver Physiol. 2010 Aug;299(2):467-75. https://doi.org/10.1152/ajpgi.00364.2009
 
Chen KT, Malo MS, Beasley-Topliffe LK, Poelstra K, Millan JL, Mostafa G, Alam SN, Ramasamy S, Warren HS, Hohmann EL, Hodin RA. A role for intestinal alkaline phosphatase in the maintenance of local gut immunity. Dig Dis Sci. 2011 Feb;56(4):1020-7. https://doi.org/10.1007/s10620-010-1396-x
 
Cheng G, Hao H, Xie S, Wang X, Dai M, Huang L, Yuan Z. Antibiotic alternatives: The substitution of antibiotics in animal husbandry? Front Microbiol. 2014 May 13;5:1-16. https://doi.org/10.3389/fmicb.2014.00217
 
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014 Dec;505(7484):559-63. https://doi.org/10.1038/nature12820
 
Dersjant-Li Y, Wealleans AL, Barnard LP, Lane S. Effect of increasing Buttiauxella phytase dose on nutrient digestibility and performance in weaned piglets fed corn or wheat based diets. Anim Feed Sci Tech. 2017 Dec 1;234:101-9. https://doi.org/10.1016/j.anifeedsci.2017.09.008
 
De Lange CFM, Pluske J, Gong J, Nyachoti CM. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livest Sci. 2010 Sep 1;134(1-3):124-34. https://doi.org/10.1016/j.livsci.2010.06.117
 
Duca FA, Sakar Y, Covasa M. The modulatory role of high fat feeding on gastrointestinal signals in obesity. J Nutr Biochem. 2013 Oct 1;24(10):1663-77. https://doi.org/10.1016/j.jnutbio.2013.05.005
 
Fawley J, Gourlay DM. Intestinal alkaline phosphatase: A summary of its role in clinical disease. J Surg Res. 2016 May 1;202(1):225-34. https://doi.org/10.1016/j.jss.2015.12.008
 
Foster JA, Rinaman L, Cryan JF. Stress and the gut-brain axis: Regulation by the microbiome. Neurobiol Stress. 2017 Mar;7:124-36. https://doi.org/10.1016/j.ynstr.2017.03.001
 
Ghanim H, Abuaysheh S, Sia CL, Korzeniewski K, Chaudhuri A, Fernandez-Real JM, Dandona P. Increase in plasma endotoxin concentrations and the expression of toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: Implications for insulin resistance. Diabetes Care. 2009 Dec 1;32(12):2281-7. https://doi.org/10.2337/dc09-0979
 
Goldberg RF, Austen WG, Zhang X, Munene G, Mostafa G, Biswas S, McCormack M, Eberlin KR, Nguyen JT, Tatlidede HS, Warren HS, Narisawa S, Millan JL, Hodin RA. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci. 2008 Mar 4;105(9):3551-6. https://doi.org/10.1073/pnas.0712140105
 
Gu R, Sun Y. Does serum alkaline phosphatase level really indicate the prognosis in patients with osteosarcoma? A meta-analysis. J Cancer Res Ther. 2018 Jun 1;14(9):S468-72. https://doi.org/10.4103/0973-1482.177217
 
Gul SS, Hamilton ARL, Munoz AR, Phupitakphol T, Liu W, Hyoju SK, Economopoulos KP, Morrison S, Hu D, Zhang W, Gharedaghi MH, Huo H, Hamarneh SR, Hodin RA. Inhibition of the gut enzyme intestinal alkaline phosphatase may explain how aspartame promotes glucose intolerance and obesity in mice. Appl Physiol Nutr Metab. 2017 Nov;42(1):77-83. https://doi.org/10.1139/apnm-2016-0346
 
Haarhaus M, Brandenburg V, Kalantar-Zadeh K, Stenvinkel P, Magnusson P. Alkaline phosphatase: A novel treatment target for cardiovascular disease in CKD. Nat Rev Nephrol. 2017 May;13(7):429-42. https://doi.org/10.1038/nrneph.2017.60
 
Hamarneh SR, Kim BM, Kaliannan K, Morrison SA, Tantillo TJ, Tao Q, Mohamed MMR, Ramirez JM, Karas A, Liu W, Hu D, Teshager A, Gul SS, Economopoulos KP, Bhan AK, Malo MS, Choi MY, Hodin RA. Intestinal alkaline phosphatase attenuates alcohol-induced hepatosteatosis in mice. Dig Dis Sci. 2017 Apr;62(8):2021-34.  https://doi.org/10.1007/s10620-017-4576-0
 
Han YS, Tang CH, Zhao QY, Zhan TF, Zhang K, Han YM, Zhang JM. Effects of dietary supplementation with combinations of organic and medium chain fatty acids as replacements for chlortetracycline on growth performance, serum immunity, and fecal microbiota of weaned piglets. Livest Sci. 2018 Oct 1;216:210-8. https://doi.org/10.1016/j.livsci.2018.08.013
 
Heinrich D, Bruland O, Guise TA, Suzuki H, Sartor O. Alkaline phosphatase in metastatic castration-resistant prostate cancer: Reassessment of an older biomarker. Futur Oncol. 2018 Jun;14(24):2543-56. https://doi.org/10.2217/fon-2018-0087
 
Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016 Jul;535(7610):75-84. https://doi.org/10.1038/nature18848
 
Hu S, Cao X, Wu Y, Mei X, Xu H, Wang Y, Zhang X, Gong L, Li W. Effects of probiotic Bacillus as an alternative of antibiotics on digestive enzymes activity and intestinal integrity of piglets. Front Microbiol. 2018 Oct 22;9:1-9.  https://doi.org/10.3389/fmicb.2018.02427
 
Jayaraman B, Nyachoti CM. Husbandry practices and gut health outcomes in weaned piglets: A review. Anim Nutr. 2017 Sep 1;3(3):205-11. https://doi.org/10.1016/j.aninu.2017.06.002
 
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015 Oct 14;9:1-20. https://doi.org/10.3389/fncel.2015.00392
 
Kiarie E, Romero LF, Nyachoti CM. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr Res Rev. 2013 Jun;26(1):71-88. https://doi.org/10.1017/S0954422413000048
 
Kil DY, Kwon WB, Kim BG. Dietary acidifiers in weanling pig diets: A review. Ver Colom Cienc Pecua. 2011 Jul-Sep;24(3):231-47.
 
Kogut MH, Arsenault RJ. Gut health: The new paradigm in food animal production. Front Vet Sci. 2016 Aug 31;3:10-3. https://doi.org/10.3389/fvets.2016.00071
 
Koyama I, Matsunaga T, Harada T, Hokari S, Komoda T. Alkaline phosphatases reduce toxicity of lipopolysaccharides in vivo and in vitro through dephosphorylation. Clin Biochem. 2002 Sep 1;35(6):455-61. https://doi.org/10.1016/S0009-9120(02)00330-2
 
Lackeyram D, Yang C, Archbold T, Swanson KC, Fan MZ. Early weaning reduces small intestinal alkaline phosphatase expression in pigs. J Nutr. 2010 Jan;140(3):461-8. https://doi.org/10.3945/jn.109.117267
 
Lalles JP. Intestinal alkaline phosphatase: Multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutr Rev. 2010 Jun 1;68(6):323-32. https://doi.org/10.1111/j.1753-4887.2010.00292.x
 
Lalles JP. Intestinal alkaline phosphatase: Novel functions and protective effects. Nutr Rev. 2014 Feb 1;72(2):82-94. https://doi.org/10.1111/nure.12082
 
Li Q, Gabler NK, Loving CL, Gould SA, Patience JF. A dietary carbohydrase blend improved intestinal barrier function and growth rate in weaned pigs fed higher fiber diets. J Anim Sci. 2018 Oct;96(12):5233-43. https://doi.org/10.1093/jas/sky383
 
Liao SF, Nyachoti M. Using probiotics to improve swine gut health and nutrient utilization. Anim Nutr. 2017 Dec 1;3(4):331-43. https://doi.org/10.1016/j.aninu.2017.06.007
 
Liu Y, Espinosa CD, Abelilla JJ, Casas GA, Lagos LV, Lee SA, Kwon WB, Mathai JK, Navarro DMDL, Jaworski NW, Stein HH. Non-antibiotic feed additives in diets for pigs: A review. Anim Nutr. 2018 Jun 1;4(2):113-25. https://doi.org/10.1016/j.aninu.2018.01.007
 
Long SF, Xu YT, Pan L, Wang QQ, Wang CL, Wu JY, Wu YY, Han YM, Yun CH, Piao XS. Mixed organic acids as antibiotic substitutes improve performance, serum immunity, intestinal morphology and microbiota for weaned piglets. Anim Feed Sci Tech. 2018 Jan 1;235:23-32. https://doi.org/10.1016/j.anifeedsci.2017.08.018
 
Lowe D, John S. Alkaline phosphatase. StatPearls [Internet]. 2018 Apr [cited 2019 Dec 1]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459201/.
 
Lu H, Kuhn I, Bedford MR, Whitfield H, Brearley C, Adeola O, Ajuwon KM. Effect of phytase on intestinal phytate breakdown, plasma inositol concentrations, and glucose transporter type 4 abundance in muscle membranes of weanling pigs. J Anim Sci. 2019 Jul;97(9):3907-19. https://doi.org/10.1093/jas/skz234
 
Mahmood A, Engle MJ, Alpers DH. Secreted intestinal surfactant-like particles interact with cell membranes and extracellular matrix proteins in rats. J Physiol. 2002 Jul;542(1):237-44. https://doi.org/10.1113/jphysiol.2002.017087
 
Malo MS, Moaven O, Muhammad N, Biswas B, Alam SN, Economopoulos KP, Gul SS, Hamarneh SR, Malo NS, Teshager A, Mohamed MMR, Tao Q, Narisawa S, Millan JL, Hohmann EL, Shaw Warren H, Robson SC, Hodin RA. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates. Am J Physiol Gastrointest Liver Physiol. 2014 May 15;306(10):826-38. https://doi.org/10.1152/ajpgi.00357.2013
 
Martinez-Moya P, Ortega-Gonzalez M, Gonzalez R, Anzola A, Ocon B, Hernandez-Chirlaque C, Lopez-Posadas R, Suarez MD, Zarzuelo A, Martinez-Augustin O, Sanchez de Medina F. Exogenous alkaline phosphatase treatment complements endogenous enzyme protection in colonic inflammation and reduces bacterial translocation in rats. Pharmacol Res. 2012 Aug;66(2):144-53. https://doi.org/10.1016/j.phrs.2012.04.006
 
McConnell RE, Higginbotham JN, Shifrin DA, Tabb DL, Coffey RJ, Tyska MJ. The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol. 2009 Jun 29;185(7):1285-98. https://doi.org/10.1083/jcb.200902147
 
Melo ADB, Silveira H, Luciano FB, Rade C, Costa LB, Rostagno MH. Intestinal alkaline phosphatase: Potential roles in promoting gut health in weanling piglets and its modulation by feed additives – A review. Asian-Australas J Anim Sci. 2016 Jan;29(1):16-22. https://doi.org/10.5713/ajas.15.0120
 
Mizumori M, Ham M, Guth PH, Engel E, Kaunitz JD, Akiba Y. Intestinal alkaline phosphatase regulates protective surface microclimate pH in rat duodenum. J Physiol. 2009 Jul 15;587(14):3651-63. https://doi.org/10.1113/jphysiol.2009.172270
 
Moeser AJ, Pohl CS, Rajput M. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Anim Nutr. 2017 Dec;3(4):313-21.  https://doi.org/10.1016/j.aninu.2017.06.003
 
Moreira APB, Texeira TFS, Ferreira AB, Peluzio MCG, Alfenas RCG. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr. 2012 Sep;108(5):801-9. https://doi.org/10.1017/S0007114512001213
 
Moss AK, Hamarneh SR, Mohamed MMR, Ramasamy S, Yammine H, Patel P, Kaliannan K, Alam SN, Muhammad N, Moaven O, Teshager A, Malo NS, Narisawa S, Millan JL, Shaw Warren H, Hohmann E, Malo MS, Hodin RA. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate. Am J Physiol Gastrointest Liver Physiol. 2013 Mar 15;304(6):G597-604. https://doi.org/10.1152/ajpgi.00455.2012
 
Mukhopadhya A, O’Doherty JV, Sweeney T. A combination of yeast beta-glucan milk hydrolysate is a suitable alternative to zinc oxide in the race to alleviate post-weaning diarrhoea in piglets. Sci Rep. 2019 Jan 24;9(1):1-11. https://doi.org/10.1038/s41598-018-37004-9
 
Mussa T, Ballester M, Silva-Campa E, Baratelli M, Busquets N, Lecours MP, Dominguez J, Amadori M, Fraile L, Hernandez J, Montoya M. Swine, human or avian influenza viruses differentially activates porcine dendritic cells cytokine profile. Vet Immunol Immunopathol. 2013 Jul 15;154(1-2):25-35. https://doi.org/10.1016/j.vetimm.2013.04.004
 
Pan L, Zhao PF, Ma XK, Shang QH, Xu YT, Long SF, Wu Y, Yuan FM, Piao XS. Probiotic supplementation protects weaned pigs against enterotoxigenic Escherichia coli k88 challenge and improves performance similar to antibiotics. J Anim Sci. 2017 Jun;95(6):2627-39.  https://doi.org/10.2527/jas.2016.1243
 
Pearlin BV, Muthuvel S, Govidasamy P, Villavan M, Alagawany M, Ragab Farag M, Dhama K, Gopi M. Role of acidifiers in livestock nutrition and health: A review. J Anim Physiol Anim Nutr. 2020 Jan;104(2):558-69. https://doi.org/10.1111/jpn.13282
 
Peng M, Wang Z, Peng S, Zhang M, Duan Y, Li F, Shi S, Yang Q, Zhang C. Dietary supplementation with the extract from Eucommia ulmoides leaves changed epithelial restitution and gut microbial community and composition of weanling piglets. PLoS One. 2019 Sep 26;14(9):e0223002. https://doi.org/10.1371/journal.pone.0223002
 
Peeters L, Mostin L, Wattiau P, Boyen F, Dewulf J, Maes D. Efficacy of Clostridium butyricum as probiotic feed additive against experimental Salmonella Typhimurium infection in pigs. Livest Sci. 2019 Mar 1;221:82-5. https://doi.org/10.1016/j.livsci.2018.12.019
 
Pluske JR, Turpin DL, Kim JC. Gastrointestinal tract (gut) health in the young pig. Anim Nutr. 2018 Jun;4(2):187-96. https://doi.org/10.1016/j.aninu.2017.12.004
 
Poelstra K, Bakker WW, Klok PA, Kamps JAAM, Hardonk MJ, Meijer DKF. Dephosphorylation of endotoxin by alkaline phosphatase in vivo. Am J Pathol. 1997 Oct;151(4):1163-9.
 
Rader BA. Alkaline phosphatase, an unconventional immune protein. Front Immunol. 2017 Aug 3;8:1-6. https://doi.org/10.3389/fimmu.2017.00897
 
Ramasamy S, Nguyen DD, Eston MA, Alam SN, Moss AK, Ebrahimi F, Biswas B, Mostafa G, Chen KT, Kaliannan K, Yammine H, Narisawa S, Millan JL, Warren HS, Hohmann EL, Mizoguchi E, Reinecker HC, Bhan AK, Snapper SB, Malo MS, Hodin RA. Intestinal alkaline phosphatase has beneficial effects in mouse models of chronic colitis. Inflamm Bowel Dis. 2011 Jul;17(2):532-42. https://doi.org/10.1002/ibd.21377
 
Sasaki S, Segawa H, Hanazaki A, Kirino R, Fujii T, Ikuta K, Noguchi M, Sasaki S, Koike M, Tanifuji K, Shiozaki Y, Kaneko I, Tatsumi S, Shimohata T, Kawai Y, Narisawa S, Millan JL, Miyamoto KI. A role of intestinal alkaline phosphatase 3 (Akp3) in inorganic phosphate homeostasis. Kidney Blood Press Res. 2018 Sep;43(5):1409-24. https://doi.org/10.1159/000493379
 
Schiering C, Krausgruber T, Chomka A, Frohlich A, Adelmann K, Wohlfert EA, Pott J, Griseri T, Bollrath J, Hegazy AN, Harrison OJ, Owens BMJ, Lohning M, Belkaid Y, Fallon PG, Powrie F. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature. 2014 Jul;513(7519):564-8. https://doi.org/10.1038/nature13577
 
Shinkai H, Tanaka M, Morozumi T, Eguchi-Ogawa T, Okumura N, Muneta Y, Awata T, Uenishi H. Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR5, TLR6 genes. Immunogenetics. 2006 Apr;58(4):324-30. https://doi.org/10.1007/s00251-005-0068-z
 
Song ZH, Xiao K, Ke YL, Jiao LF, Hu CH. Zinc oxide influences mitogen-activated protein kinase and TGF-β1 signaling pathways, and enhances intestinal barrier integrity in weaned pigs. Innate Immun. 2015 Jun;21(4):341-8. https://doi.org/10.1177/1753425914536450
 
Stevanovic ZD, Bosnjak-Neumuller J, Pajic-Lijakovic I, Raj J, Vasiljevic M. Essential oils as feed additives – Future perspectives. Molecules. 2018 Jul 14;23(7):1-20. https://doi.org/10.3390/molecules23071717
 
Suryanarayana MVAN, Durga S. Role of phytogenic feed additives in swine production – A review. Int J Environ Agric Biotechnol. 2018 May-Jun;3(3):1071-8. https://doi.org/10.22161/ijeab/3.3.46
 
Sussman NL, Eliakim R, Rubin D, Perlmutter DH, DeSchryver-Kecskemeti K, Alpers DH. Intestinal alkaline phosphatase is secreted bidirectionally from villous enterocytes. Am J Physiol Gastrointest Liver Physiol. 1989 Jul 1;257(1):G14-23. https://doi.org/10.1152/ajpgi.1989.257.1.G14
 
Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003 Jan;21(1):335-76. https://doi.org/10.1146/annurev.immunol.21.120601.141126
 
Takeda K, Akira S. TLR signaling pathways. Semin Immunol. 2004 Feb;16(1):3-9. https://doi.org/10.1016/j.smim.2003.10.003
 
Tan P, Xie N, Ai J, Xu H, Xu H, Liu L, Yang L, Wei Q. The prognostic significance of Albumin-to-Alkaline Phosphatase Ratio in upper tract urothelial carcinoma. Sci Rep. 2018 Aug 17;8(1):1-8. https://doi.org/10.1038/s41598-018-29833-5
 
Tian S, Wang J, Yu H, Wang J, Zhu W. Effects of galacto-oligosaccharides on growth and gut function of newborn suckling piglets. J Anim Sci Biotechnol. 2018 Oct;9(1):1-11. https://doi.org/10.1186/s40104-018-0290-9
 
Tohno M, Shimosato T, Moue M, Aso H, Watanabe K, Kawai Y, Yamaguchi T, Saito T, Kitazawa H. Toll-like receptor 2 and 9 are expressed functional in gut-associated lymphoid tissues of presuckling newborn swine. Vet Res. 2006 Nov-Dec;37(6):791-812. https://doi.org/10.1051/vetres:2006036
 
Tuin A, Huizinga-Van Der Vlag A, Van Loenen-Weemaes AMMA, Meijer DKF, Poelstra K. On the role and fate of LPS-dephosphorylating activity in the rat liver. Am J Physiol Gastrointest Liver Physiol. 2006 Feb;290(2):G377-85. https://doi.org/10.1152/ajpgi.00147.2005
 
Upadhaya SD, Lee KY, Serpunja S, Song TH, Kim IH. Growth performance, nutrient digestibility, fecal microbiota and fecal noxious gas emission in weaning pigs fed high- and low-density diet with and without protected organic acid blends. Anim Feed Sci Tech. 2018 May 1;239:1-8. https://doi.org/10.1016/j.anifeedsci.2017.12.013
 
Wei HK, Xue HX, Zhou ZX, Peng J. A carvacrol-thymol blend decreased intestinal oxidative stress influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets. Animal. 2017 Feb;11(2):193-201. https://doi.org/10.1017/S1751731116001397
 
Werling D, Jungi TW. TOLL-like receptors linking innate adaptive immune response. Vet Immunol Immunopathol. 2003 Jan 10;91(1):1-12. https://doi.org/10.1016/S0165-2427(02)00228-3
 
Xu YT, Liu LI, Long SF, Pan L, Piao XS. Effect of organic acids and essential oils on performance, intestinal health and digestive enzyme activities of weaned pigs. Anim Feed Sci Tech. 2018 Jan;235:110-9. https://doi.org/10.1016/j.anifeedsci.2017.10.012
 
Yeoman CJ, White BA. Gastrointestinal tract microbiota and probiotics in production animals. Annu Rev Anim Biosci. 2014 Feb;2:469-86. https://doi.org/10.1146/annurev-animal-022513-114149
 
Zhai H, Liu H, Wang S, Wu J, Kluenter AM. Potential of essential oils for poultry and pigs. Anim Nutr. 2018 Jun;4(2):179-86. https://doi.org/10.1016/j.aninu.2018.01.005
 
download PDF

© 2020 Czech Academy of Agricultural Sciences