Prebiotics supplementation modulates pre-weaning stress in male cattle calves by improving growth performance, health scores and serum biomarkers

Raza M., Yousaf M.S., Ahmad J., Rashid M.A., Majeed K.A., Tahir S.K., Ashraf S., Numan M., Khalid A., Rehman H. (2022): Prebiotics supplementation modulates pre-weaning stress in male cattle calves by improving growth performance, health scores and serum biomarkers. Czech J. Anim. Science., 67: 102–113.

download PDF

Neonatal calves are prone to gastrointestinal infections and microbial dysbiosis that lead to high morbidity and mortality. Prebiotics can be used to mitigate the adverse effects of gut diseases and microbial dysbiosis. Forty male Holstein-Friesian calves (2 ± 1 day old) were divided into four dietary treatments: control (milk without prebiotics), YCW-2, YCW-4 (milk containing 2 or 4 g/day/calf of yeast cell wall, respectively), and cMOS (milk containing commercial mannan-oligosaccharides 4 g/day/calf). Milk intake, feed intake, and health scores were recorded daily, whereas body weight, dry matter intake (DMI), and body measurements were recorded weekly. Feed efficiency (FE) was determined at the end of the trial (eight weeks). Cell-mediated immunity (CMI) was assessed by the topical application of dinitrochlorobenzene. Blood samples were collected fortnightly to determine glucose, non-esterified fatty acid (NEFA), blood urea nitrogen (BUN), and beta-hydroxybutyric acid (βHBA). Cell wall supplemented calves had significantly higher (P < 0.05) final body weights, DMI, and body measurements along with improved (P < 0.05) faecal scores. Feed intake was higher (P < 0.05) in both the YCW-supplemented calves. Glucose was lower (P < 0.001), whereas BUN and βHBA were significantly higher in the YCW-2 animals. No differences were observed in FE, CMI, and NEFA between all the experimental animals. The yeast cell wall (2 g) may have the potential to improve the growth performance and health status of neonatal calves.

Alugongo GM, Xiao JX, Chung YH, Dong SZ, Li SL, Yoon I, Wu ZH, Cao ZJ. Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Performance and health. J Dairy Sci. 2017 Feb 1;100(2):1189-99.
AOAC – Association of Official Analytic Chemists. Official methods of analysis. 16th ed. Washington, DC, USA: Association of Official Analytical Chemists;1991.
Ballou MA. Case study: Effects of a blend of prebiotics, probiotics, and hyperimmune dried egg protein on the performance, health, and innate immune responses of Holstein calves. Prof Anim Sci. 2011 Jun 1;27(3):262-8.
Brewer MT, Anderson KL, Yoon I, Scott MF, Carlson SA. Amelioration of salmonellosis in pre-weaned dairy calves fed Saccharomyces cerevisiae fermentation products in feed and milk replacer. Vet Microbiol. 2014 Aug 6;172(1-2):248-55.
Burton JL, Kennedy B, Burnside E, Wilkie B, Burton J. Dinitrochlorobenzene contact hypersensitivity as a marker trait for selection to improve disease resistance in calves. J Dairy Sci. 1989 Sep 1;72(9):2351-61.
Cangiano LR, Yohe TT, Steele MA, Renaud DL. Invited review: Strategic use of microbial-based probiotics and prebiotics in dairy calf rearing. Appl Anim Sci. 2020 Oct 1;36(5):630-51.
Che TM, Song M, Liu Y, Johnson RW, Kelley KW, Van Alstine WG, Dawson KA, Pettigrew JE. Mannan oligosaccharide increases serum concentrations of antibodies and inflammatory mediators in weanling pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J Anim Sci. 2012 Aug 1;90(8):2784-93.
Dar AH, Singh SK, Kumar S, Para IA, Devi K, Kumar N, Khan AS, Ul-Ain F. Impact of supplementation of probiotic, prebiotic and synbiotic on serum biochemical profile of crossbred calves. Indian J Anim Res. 2019 Feb 1;53(11):232-5.
Ghosh S, Mehla RK. Influence of dietary supplementation of prebiotics (mannanoligosaccharide) on the performance of crossbred calves. Trop Anim Health Prod. 2012 Mar;44(3):617-22.
Hadorn U, Hammon H, Bruckmaier RM, Blum JW. Delaying colostrum intake by one day has important effects on metabolic traits and on gastrointestinal and metabolic hormones in neonatal calves. J Nutr. 1997 Oct 1;127(10):2011-23.
He ZX, Ferlisi B, Eckert E, Brown HE, Aguilar A, Steele MA. Supplementing a yeast probiotic to pre-weaning Holstein calves: Feed intake, growth and fecal biomarkers of gut health. Anim Feed Sci Technol. 2017 Apr 1;226:81-7.
Heinrichs A, Wells SJ, Losinger WC. A study of the use of milk replacers for dairy calves in the United States. J Dairy Sci. 1995 Dec 1;78(12):2831-7.
Hill SR, Hopkins BA, Davidson S, Bolt SM, Diaz DE, Brownie C, Brown T, Huntington GB, Whitlow LW. The addition of cottonseed hulls to the starter and supplementation of live yeast or mannan oligosaccharide in the milk for young calves. J Dairy Sci. 2009 Feb 1;92(2):790-8.
Lane MA, Baldwin RLT, Jesse BW. Sheep rumen metabolic development in response to age and dietary treatments. J Anim Sci. 2000 Jul 1;78(7):1990-6.
Lesmeister K, Heinrichs A. Effects of corn processing on growth characteristics, rumen development, and rumen parameters in neonatal dairy calves. J Dairy Sci. 2004 Jun 1;87(10):3439-50.
Lesmeister KE, Heinrichs AJ, Gabler MT. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. J Dairy Sci. 2004 Jun 1;87(6):71832-9.
Lorenz I, Fagan J, More SJ. Calf health from birth to weaning: II. Management of diarrhoea in pre-weaned calves. Irish Vet J. 2011 Dec;64(1):9-14.
Magalhaes VJA, Susca F, Lima FS, Branco AF, Yoon I. Effect of feeding yeast culture on performance, health and immunocompetence of dairy calves. J Dairy Sci. 2008 Apr 1;91(4):1497-509.
McGuirk SM. Disease management of dairy calves and heifers. Vet Clin Food Anim Prac. 2008 Mar 1;24(1):139-53.
Quigley JD III, Caldwell LA, Sinks GD, Heitmann RN. Changes in blood glucose, nonesterified fatty acids, and ketones in response to weaning and feed intake in young calves. J Dairy Sci. 1991 Jan 1;74(1):250-7.
Quigley JD III, Kost CJ, Wolfe TA. Effects of spray-dried animal plasma in milk replacers or additives containing serum and oligosaccharides on growth and health of calves. J Dairy Sci. 2002 Feb 1;85(2):413-21.
Quigley JD, Wolfe TA, Elsasser TH. Effects of additional milk replacer feeding on calf health, growth, and selected blood metabolites in calves. J Dairy Sci. 2006 Jan 1;89(1):207-16.
Rashid MA, Pasha TN, Jabbar MA, Ijaz A, Rehman H, Yousaf MS. Influence of weaning regimen on intake, growth characteristics and plasma blood metabolites in male buffalo calves. Animal. 2013 Jan 1;7(9):1472-8.
Roodposhti PM, Dabiri N. Effects of probiotic and prebiotic on average daily gain, fecal shedding of Escherichia coli, and immune system status in newborn female calves. Asian-Aust J Anim Sci. 2012 Sep;25(9): 7 p.
Sharma AN, Kumar S, Tyagi AK. Effects of mannan-oligosaccharides and Lactobacillus acidophilus supplementation on growth performance, nutrient utilization and faecal characteristics in Murrah buffalo calves. J Anim Physiol Anim Nutr. 2018 Jun;102(3):679-89.
Spring P, Wenk C, Dawson K, Newman K. The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult Sci. 2000 Feb 1;79(2):205-11.
Terre M, Calvo MA, Adelantado C, Kocher A, Bach A. Effects of mannan oligosaccharides on performance and microorganism fecal counts of calves following an enhanced-growth feeding program. Anim Feed Sci Technol. 2007 Sep 1;137(1-2):115-25.
Van Soest PJ, Robertson JB, Lewis BA. Symposium: Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. J Dairy Sci. 1991 Feb 6;74(10):3583-97.
White LA, Newman MC, Cromwell GL, Lindemann MD. Brewers dried yeast as a source of mannan oligosaccharides for weanling pigs. J Anim Sci. 2002 Oct 1;80(10):2619-28.
Wismar R, Brix S, Frokiaer H, Nygaard LH. Dietary fibers as immunoregulatory compounds in health and disease. Ann N Y Acad Sci. 2010 Mar;1190(1):70-85.
Xu J, Gordon JI. Honor thy symbionts. Proc Nat Acad Sci. 2003 Sep 2;100(18):10452-9.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti