Expression and localization of PIWI proteins in testis and ovary of domestic sheep

https://doi.org/10.17221/7/2020-CJASCitation:Li C., Liu Q., Wang X., Hu W., Han D., Mwacharo J.M., Wei C., Chu M., Di R. (2020): Expression and localization of PIWI proteins in testis and ovary of domestic sheep. Czech J. Anim. Sci., 65: 86-96.
download PDF

The piRNA-PIWI protein complex plays crucial roles in safeguarding the genome against inordinate transposon mobilization and regulation of embryonic development. A previous study indicated the presence of piRNA in sheep reproductive organs. However, the tissue distribution and cellular localization of PIWI proteins in sheep remains unclear. Therefore the present study aimed to explore the expression profiles of mRNAs of mammalian PIWI proteins (PIWIL1, PIWIL2, PIWIL4 and AGO3) in 9 tissues derived from adult male and female sheep. Results showed the expression of PIWIL1, PIWIL2, and PIWIL4 was significantly higher in the testis and ovary than in the other tissues. Immunohistochemistry analysis of testes indicated that each of the 4 proteins had specific cellular localizations, and some of the localizations were different from those of other species. All the proteins were mainly localized in the primary spermatocytes, suggesting that they are crucial for silencing of transposon to guarantee the integrity of the gamete genome during early stage of spermatogenesis. In the ovaries, the PIWI proteins were mainly localized in oocytes from antral follicles and leukocytes in ovarian blood. Our results provide insights to better understand the functions of PIWI proteins during spermatogenesis, oogenesis and immune defence in sheep.

References:
Alazem M, He MH, Moffett P, Lin NS. Abscisic acid induces resistance against bamboo mosaic virus through Argonaute 2 and 3. Plant Physiol. 2017 May 1;174(1):339-55. https://doi.org/10.1104/pp.16.00015
 
Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell. 2008 Sep 26;31(6):785-99. https://doi.org/10.1016/j.molcel.2008.09.003
 
Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N, Kasschau KD, Chaves DA, Gu W, Vasale JJ, Duan S, Conte Jr D. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell. 2008 Jul 11;31(1):67-78.  https://doi.org/10.1016/j.molcel.2008.06.002
 
Bortvin A. PIWI-interacting RNAs (piRNAs) − a mouse testis perspective. Biochemistry (Mosc). 2013 Jun 1;78(6):592-602.  https://doi.org/10.1134/S0006297913060059
 
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007 Mar 23;128(6):1089-103. https://doi.org/10.1016/j.cell.2007.01.043
 
Deng W, Lin H. Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell. 2002 Jun 1;2(6):819-30.  https://doi.org/10.1016/S1534-5807(02)00165-X
 
Di R, He J, Song S, Tian D, Liu Q, Liang X, Ma Q, Sun M, Wang J, Zhao W, Cao G. Characterization and comparative profiling of ovarian microRNAs during ovine anestrus and the breeding season. BMC Genomics. 2014 Dec 1;15(1):899.  https://doi.org/10.1186/1471-2164-15-899
 
Ding X, Guan H, Li H. Characterization of a piRNA binding protein Miwi in mouse oocytes. Theriogenology. 2013 Mar 1;79(4):610-5.  https://doi.org/10.1016/j.theriogenology.2012.11.013
 
Fang X, Chen C, Cai J, Xiang E, Li J, Chen P. Genome-wide methylation study of whole blood cells DNA in men with congenital hypopituitarism disease. Int J Mol Med. 2019 Jan 1;43(1):155-66.
 
Freedman JE, Gerstein M, Mick E, Rozowsky J, Levy D, Kitchen R, Das S, Shah R, Danielson K, Beaulieu L, Navarro FC. Diverse human extracellular RNAs are widely detected in human plasma. Nat Commun. 2016 Apr 26;7:11106.  https://doi.org/10.1038/ncomms11902
 
Gainetdinov I, Skvortsova Y, Kondratieva S, Funikov S, Azhikina T. Two modes of targeting transposable elements by piRNA pathway in human testis. RNA. 2017 Nov 1;23(11):1614-25. https://doi.org/10.1261/rna.060939.117
 
Goh WS, Falciatori I, Tam OH, Burgess R, Meikar O, Kotaja N, Hammell M, Hannon GJ. piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes Dev. 2015 May 15;29(10):1032-44.  https://doi.org/10.1101/gad.260455.115
 
Gomes Fernandes M, He N, Wang F, Van Iperen L, Eguizabal C, Matorras R, Roelen BA, Chuva De Sousa Lopes SM. Human-specific subcellular compartmentalization of P-element induced wimpy testis-like (PIWIL) granules during germ cell development and spermatogenesis. Hum Reprod. 2018 Feb 1;33(2):258-69. https://doi.org/10.1093/humrep/dex365
 
Gong J, Zhang Q, Wang Q, Ma Y, Du J, Zhang Y, Zhao X. Identification and verification of potential piRNAs from domesticated yak testis. Reproduction. 2018 Feb 1;155(2):117-27.  https://doi.org/10.1530/REP-17-0592
 
Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC. A slicer-mediated mechanism for repeat-associated siRNA 5’end formation in Drosophila. Science. 2007 Mar 16;315(5818):1587-90. https://doi.org/10.1126/science.1140494
 
Hadziselimovic F, Hadziselimovic NO, Demougin P, Krey G, Oakeley E. Piwi-pathway alteration induces LINE-1 transposon derepression and infertility development in cryptorchidism. Sex Dev. 2015;9(2):98-104.  https://doi.org/10.1159/000375351
 
Han BW, Wang W, Li C, Weng Z, Zamore PD. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science. 2015 May 15;348(6236):817-21.  https://doi.org/10.1126/science.aaa1264
 
Han YN, Li Y, Xia SQ, Zhang YY, Zheng JH, Li W. PIWI proteins and PIWI-interacting RNA: emerging roles in cancer. Cell Physiol Biochem. 2017;44(1):1-20.  https://doi.org/10.1159/000484541
 
Hempfling AL, Lim SL, Adelson DL, Evans J, O’Connor AE, Qu ZP, Kliesch S, Weidner W, O’Bryan MK, Bergmann M. Expression patterns of HENMT1 and PIWIL1 in human testis: implications for transposon expression. Reproduction. 2017 Oct 1;154(4):363-74.  https://doi.org/10.1530/REP-16-0586
 
Hirano T, Iwasaki YW, Lin ZY, Imamura M, Seki NM, Sasaki E, Saito K, Okano H, Siomi MC, Siomi H. Small RNA profiling and characterization of piRNA clusters in the adult testes of the common marmoset, a model primate. RNA. 2014 Aug 1;20(8):1223-37.  https://doi.org/10.1261/rna.045310.114
 
Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, Van Den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell. 2007 Apr 6;129(1):69-82.  https://doi.org/10.1016/j.cell.2007.03.026
 
Huang RC, Garratt ES, Pan H, Wu Y, Davis EA, Barton SJ, Burdge GC, Godfrey KM, Holbrook JD, Lillycrop KA. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood. Epigenetics. 2015 Nov 2;10(11):995-1005.  https://doi.org/10.1080/15592294.2015.1080411
 
Kabayama Y, Toh H, Katanaya A, Sakurai T, Chuma S, Kuramochi-Miyagawa S, Saga Y, Nakano T, Sasaki H. Roles of MIWI, MILI and PLD6 in small RNA regulation in mouse growing oocytes. Nucleic Acids Res. 2017 May 19;45(9):5387-98. https://doi.org/10.1093/nar/gkx027
 
Kang HJ, Moon MJ, Lee HY, Han SW. Testosterone alters testis function through regulation of piRNA expression in rats. Mol Biol Rep. 2014 Oct 1;41(10):6729-35.  https://doi.org/10.1007/s11033-014-3558-y
 
Kimura M, Ishida K, Kashiwabara SI, Baba T. Characterization of two cytoplasmic poly (A)-binding proteins, PABPC1 and PABPC2, in mouse spermatogenic cells. Biol Reprod. 2009 Mar 1;80(3):545-54.  https://doi.org/10.1095/biolreprod.108.072553
 
Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, Klein PS, Rigoutsos I, Jongens TA, Mourelatos Z. Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Biol. 2009 May;11(5):652-8.  https://doi.org/10.1038/ncb1872
 
Kowalczykiewicz D, Pawlak P, Lechniak D, Wrzesinski J. Altered expression of porcine Piwi genes and piRNA during development. PLoS One. 2012;7(8):e43816. https://doi.org/10.1371/journal.pone.0043816
 
Krawczynski K, Najmula J, Bauersachs S, Kaczmarek MM. MicroRNAome of porcine conceptuses and trophoblasts: expression profile of micrornas and their potential to regulate genes crucial for establishment of pregnancy. Biol Reprod. 2015 Jan 1;92(1):1-22.  https://doi.org/10.1095/biolreprod.114.123588
 
Lee JH, Schutte D, Wulf G, Fuzesi L, Radzun HJ, Schweyer S, Engel W, Nayernia K. Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Hum Mol Genet. 2006 Jan 15;15(2):201-11.  https://doi.org/10.1093/hmg/ddi430
 
Lim SL, Tsend-Ayush E, Kortschak RD, Jacob R, Ricciardelli C, Oehler MK, Grutzner F. Conservation and expression of PIWI-interacting RNA pathway genes in male and female adult gonad of amniotes. Biol Reprod. 2013 Dec 1;89(6):136. https://doi.org/10.1095/biolreprod.113.111211
 
Lin H, Yin H. A novel epigenetic mechanism in Drosophila somatic cells mediated by Piwi and piRNAs. Cold Spring Harb Symp Quant Biol. 2008 Jan 1;73(1):273-81. https://doi.org/10.1101/sqb.2008.73.056
 
Luteijn MJ, Ketting RF. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet. 2013 Aug;14(8):523-34. https://doi.org/10.1038/nrg3495
 
Meister G. Argonaute proteins: Functional insights and emerging roles. Nat Rev Genet. 2013 Jul;14(7):447-59. https://doi.org/10.1038/nrg3462
 
Miesen P, Girardi E, van Rij RP. Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells. Nucleic Acids Res. 2015 Jul 27;43(13):6545-56. https://doi.org/10.1093/nar/gkv590
 
Nishida KM, Saito K, Mori T, Kawamura Y, Nagami-Okada T, Inagaki S, Siomi H, Siomi MC. Gene silencing mechanisms mediated by Aubergine–piRNA complexes in Drosophila male gonad. RNA. 2007 Nov 1;13(11):1911-22. https://doi.org/10.1261/rna.744307
 
Parikh RY, Lin H, Gangaraju VK. A critical role for nucleoporin 358 (Nup358) in transposon silencing and piRNA biogenesis in Drosophila. J Biol Chem. 2018 Jun 15;293(24):9140-7. https://doi.org/10.1074/jbc.AC118.003264
 
Perera BP, Tsai ZT, Colwell ML, Jones TR, Goodrich JM, Wang K, Sartor MA, Faulk C, Dolinoy DC. Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue-specific piRNA. Epigenetics. 2019 May 4;14(5):504-21. https://doi.org/10.1080/15592294.2019.1600389
 
Pillai RS, Chuma S. piRNAs and their involvement in male germline development in mice. Dev Growth Differ. 2012 Jan;54(1):78-92. https://doi.org/10.1111/j.1440-169X.2011.01320.x
 
Russell SJ, Stalker L, Gilchrist G, Backx A, Molledo G, Foster RA, LaMarre J. Identification of PIWIL1 isoforms and their expression in bovine testes, oocytes, and early embryos. Biol Reprod. 2016 Apr 1;94(4):75. https://doi.org/10.1095/biolreprod.115.136721
 
Saint-Leandre B, Clavereau I, Hua-Van A, Capy P. Transcriptional polymorphism of pi RNA regulatory genes underlies the mariner activity in Drosophila simulans testes. Mol Ecol. 2017 Jul;26(14):3715-31. https://doi.org/10.1111/mec.14145
 
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008 Jun;3(6):1101-8.  https://doi.org/10.1038/nprot.2008.73
 
Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: The vanguard of genome defence. Nat Rev Mol Cell Biol. 2011 Apr;12(4):246-58. https://doi.org/10.1038/nrm3089
 
Sugimoto K, Kage H, Aki N, Sano A, Kitagawa H, Nagase T, Yatomi Y, Ohishi N, Takai D. The induction of H3K9 methylation by PIWIL4 at the p16Ink4a locus. Biochem Biophys Res Commun. 2007 Aug 3;359(3):497-502.  https://doi.org/10.1016/j.bbrc.2007.05.136
 
Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol. 2009 Nov 10;25(1):355-76.  https://doi.org/10.1146/annurev.cellbio.24.110707.175327
 
Tosar JP, Rovira C, Cayota A. Non-coding RNA fragments account for the majority of annotated piRNAs expressed in somatic non-gonadal tissues. Commun Biol. 2018 Jan 22;1(1):1-8. https://doi.org/10.1038/s42003-017-0001-7
 
Toth KF, Pezic D, Stuwe E, Webster A. The piRNA pathway guards the germline genome against transposable elements. Adv Exp Med Biol. 2016 Dec;886:51-77.
 
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3 − new capabilities and interfaces. Nucleic Acids Res. 2012 Aug 1;40(15):e115. https://doi.org/10.1093/nar/gks596
 
Van Stry M, Oguin TH, Cheloufi S, Vogel P, Watanabe M, Pillai MR, Dash P, Thomas PG, Hannon GJ, Bix M. Enhanced susceptibility of Ago1/3 double-null mice to influenza A virus infection. J Virol. 2012 Apr 15;86(8):4151-7. https://doi.org/10.1128/JVI.05303-11
 
Varjak M, Maringer K, Watson M, Sreenu VB, Fredericks AC, Pondeville E, Donald CL, Sterk J, Kean J, Vazeille M, Failloux AB. Aedes aegypti Piwi4 is a noncanonical PIWI protein involved in antiviral responses. MSphere. 2017a Jun 28;2(3):1-16. https://doi.org/10.1128/mSphere.00144-17
 
Varjak M, Donald CL, Mottram TJ, Sreenu VB, Merits A, Maringer K, Schnettler E, Kohl A. Characterization of the Zika virus induced small RNA response in Aedes aegypti cells. PLoS Negl Trop Dis. 2017b Oct 17;11(10):e0006010.  https://doi.org/10.1371/journal.pntd.0006010
 
Varjak M, Dietrich I, Sreenu VB, Till BE, Merits A, Kohl A, Schnettler E. Spindle-e acts antivirally against alphaviruses in mosquito cells. Viruses. 2018 Feb;10(2):88. https://doi.org/10.3390/v10020088
 
Wang D, Zhang Z, O’Loughlin E, Lee T, Houel S, O’Carroll D, Tarakhovsky A, Ahn NG, Yi R. Quantitative functions of Argonaute proteins in mammalian development. Genes Dev. 2012 Apr 1;26(7):693-704. https://doi.org/10.1101/gad.182758.111
 
Wang W, Yoshikawa M, Han BW, Izumi N, Tomari Y, Weng Z, Zamore PD. The initial uridine of primary piRNAs does not create the tenth adenine that Is the hallmark of secondary piRNAs. Mol Cell. 2014 Dec 4;56(5):708-16. https://doi.org/10.1016/j.molcel.2014.10.016
 
Wang HZ, Ma T, Chang GB, Wan F, Liu XP, Lu L, Xu L, Chen J, Chen GH. Single nucleotide polymorphism screening, molecular characterization, and evolutionary aspects of chicken Piwi genes. Genet Mol Res. 2015 Jan 1;14(4):14802-10. https://doi.org/10.4238/2015.November.18.45
 
Wang H, Wang B, Liu X, Liu Y, Du X, Zhang Q, Wang X. Identification and expression of piwil2 in turbot Scophthalmus maximus, with implications of the involvement in embryonic and gonadal development. Comp Biochem Physiol B Biochem Mol Biol. 2017 Jun 1;208-209:84-93. https://doi.org/10.1016/j.cbpb.2017.04.007
 
Wang H, Wang B, Liu J, Li A, Zhu H, Wang X, Zhang Q. Piwil1 gene is regulated by hypothalamic-pituitary-gonadal axis in turbot (Scophthalmus maximus): A different effect in ovaries and testes. Gene. 2018 Jun 5;658:86-95.  https://doi.org/10.1016/j.gene.2018.03.016
 
Wu Y, Xu K, Qi H. Domain-functional analyses of PIWIL1 and PABPC1 indicate their synergistic roles in protein translation via 3'-UTRs of meiotic mRNAs. Biol Reprod. 2018 Oct 1;99(4):773-88. https://doi.org/10.1093/biolre/ioy100
 
Xie K, Zhang K, Kong J, Wang C, Gu Y, Liang C, Jiang T, Qin N, Liu J, Guo X, Huo R. Cancer-testis gene PIWIL 1 promotes cell proliferation, migration, and invasion in lung adenocarcinoma. Cancer Med. 2018 Jan;7(1):157-66. https://doi.org/10.1002/cam4.1248
 
Xu K, Yang L, Zhao D, Wu Y, Qi H. AKAP3 synthesis is mediated by RNA binding proteins and PKA signaling during mouse spermiogenesis. Biol Reprod. 2014 Jun 1;90(6):119. https://doi.org/10.1095/biolreprod.113.116111
 
Zhao SZ, Li Y, Jiang X, Lu YL, Tao DC, Liu YQ, Ma YX. Identification and expression analysis of Macaca mulatta piwil4 gene. Yi chuan. 2011 Apr;33(4):365-70. https://doi.org/10.3724/SP.J.1005.2011.00365
 
Zhou X, Guo H, Chen K, Cheng H, Zhou R. Identification, chromosomal mapping and conserved synteny of porcine Argonaute family of genes. Genetica. 2010 Jul 1;138(7):805-12. https://doi.org/10.1007/s10709-010-9462-z
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti