Biological response of piglets challenged with Escherichia coli F4 (K88) when fed diets containing intestinal alkaline phosphatase

Genova J.L., Rupolo P.E., Melo A.D.B., Santos L.B.A., Wendt G.N., Barbosa K.A., Carvalho S.T., Oliveira N.T.E., Costa L.B., Carvalho P.L.O. (2021): Biological response of piglets challenged with Escherichia coli F4 (K88) when fed diets containing intestinal alkaline phosphatase. Czech J. Anim. Sci., 66 (2021): 391-402

download PDF

The aim of the study was to investigate the effect of intestinal alkaline phosphatase (IAP) added to diets on growth performance, diarrhoea incidence (DI), blood metabolites, relative organ weight, and intestinal morphometry of weaned piglets challenged with enterotoxigenic Escherichia coli F4 (K88). A total of 64 crossbred entire male piglets (25-day-old and 7.16 ± 0.28 kg body weight) were allocated into four treatments: control diet (CD), CD + antimicrobial growth promoter (AGP), CD + 15 mg IAP/kg of diet and CD + 30 mg IAP/kg of diet, with eight replications. At 15 days, all piglets were orally challenged with 6 ml of a solution containing K88 (106 colony forming units/ml). Microencapsulated IAP in acid solution showed 14.43% solubility and pH values of 1.69, 1.72, 1.51, and 1.52 at the different times measured (0.5 h, 1.0 h, 17.0 h, and 24 h); differently, IAP in basic solution had 4.10% solubility and pH values increased (5.95, 6.10, 6.32 and 6.63) according to the different times, respectively. On days 25–35, piglets that received 30 mg IAP and CD showed a better feed conversion ratio (P = 0.075) compared to those fed 15 mg IAP. Piglets that consumed 30 mg IAP or CD had higher (P = 0.004) average daily gain on days 35–44. On days 35–44, the piglet average daily feed intake was lower (P = 0.033) with 15 mg IAP compared to AGP. In the entire period, piglets fed 15 mg IAP showed a reduction in average daily gain (P = 0.040) and average daily feed intake (P = 0.092). Piglets on 30 mg IAP showed an improvement (P ≤ 0.05) in DI in the pre-and post-challenge periods. The relative spleen weight of the piglet increased (P = 0.043) in response to 30 mg IAP. Overall, the addition of 30 mg IAP to diets improves the growth performance, attenuates DI, and promotes an increase in spleen relative weight to maintain the healthy state of piglets.


Abeni F, Petrera F, Dal Pra A, Rapetti L, Crovetto GM, Galassi G. Blood parameters in fattening pigs from two genetic types fed diet with three different protein concentrations. Transl Anim Sci. 2018 Oct;2(4):372-82.
Alam SN, Yammine H, Moaven O, Ahmed R, Moss AK, Biswas B, Ghosh S. Intestinal alkaline phosphatase prevents antibiotic-induced susceptibility to enteric pathogens. Ann Surg. 2014 Apr 1;259(4):715-22.
Bates JM, Akerlund J, Mittge E, Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007 Dec 13;2(6):371-82.
Beumer C, Wulferink M, Raaben W, Fiechter D, Brands R, Seinen W. Calf intestinal alkaline phosphatase, a novel therapeutic drug for lipopolysaccharide (LPS)-mediated diseases, attenuates LPS toxicity in mice and piglets. J Pharmacol Exp Ther. 2003 Nov 1;307(2):737-44.
Beutler B, Rietschel ET. Innate immune sensing and its roots-the story of endotoxin. Nat Rev Immunol. 2003 Feb;3(2):169-76.
Brun LR, Brance ML, Lombarte M, Lupo M, Di Loreto VE, Rigalli A. Regulation of intestinal calcium absorption by luminal calcium content: Role of intestinal alkaline phosphatase. Mol Nutr Food Res. 2014 Jul;58(7):1546-51.
Celi P, Cowieson AJ, Fru-Nji F, Steinert RE, Kluenter AM, Verlhac V. Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Anim Feed Sci Technol. 2017 Dec 1;234:88-100.
Chen KT, Malo MS, Moss AK, Zeller S, Johnson P, Ebrahimi F, Mostafa G, Alam SN, Ramasamy S, Warren HS, Hohmann EL, Hodin RA. Identification of specific targets for the gut mucosal defense factor intestinal alkaline phosphatase. Am J Physiol Gastrointest Liver Physiol. 2010 Aug 1;299(2):G467-75.
Chen KT, Malo MS, Beasley-Topliffe LK, Poelstra K, Millan JL, Mostafa G, Alam SN, Ramasamy S, Warren HS, Hohmann EL, Hodin RA. A role for intestinal alkaline phosphatase in the maintenance of local gut immunity. Dig Dis Sci. 2011 Feb 21;56(4):1020-7.
Guo M, Hayes J, Cho KO, Parwani AV, Lucas LM, Saif LJ. Comparative pathogenesis of tissue culture-adapted and wild-type Cowden porcine enteric calicivirus (PEC) in gnotobiotic pigs and induction of diarrhea by intravenous inoculation of wild-type PEC. J Virol. 2001 Oct 1;75(19):9239-51.
Jayaraman B, Nyachoti CM. Husbandry practices and gut health outcomes in weaned piglets: A review. Anim Nutr. 2017 Sep 1;3(3):205-11.
Klem TB, Bleken E, Morberg H, Thoresen SI, Framstad T. Hematologic and biochemical reference intervals for Norwegian crossbreed grower pigs. Vet Clin Pathol. 2010 Jun;39(2):221-6.
Koyama I, Matsunaga T, Harada T, Hokari S, Komoda T. Alkaline phosphatases reduce toxicity of lipopolysaccharides in vivo and in vitro through dephosphorylation. Clin Biochem. 2002 Sep 1;35(6):455-61.
Lackeyram D, Yang C, Archbold T, Swanson KC, Fan MZ. Early weaning reduces small intestinal alkaline phosphatase expression in pigs. J Nutr. 2010 Mar;140(3):461-8.
Le Roy CI, Woodward MJ, Ellis RJ, La Ragione RM, Claus SP. Antibiotic treatment triggers gut dysbiosis and modulates metabolism in a chicken model of gastro-intestinal infection. BMC Vet Res. 2019 Dec;15(1):1-13.
Liu Y, Espinosa CD, Abelilla JJ, Casas GA, Lagos LV, Lee SA, Kwon WB, Mathai JK, Navarro DMDL, Jaworski NW, Stein HH. Non-antibiotic feed additives in diets for pigs: A review. Anim Nutr. 2018 Jun 1;4(2):113-25.
Malo MS, Moaven O, Muhammad N, Biswas B, Alam SN, Economopoulos KP, Gul SS, Hamarneh SR, Malo NS, Teshager A, Mohamed MMR, Tao Q, Narisawa S, Millan JL, Hohmann EL, Shaw Warren H, Robson SC, Hodin RA. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates. Am J Physiol Gastrointest Liver Physiol. 2014 May 15;306(10):826-38.
Mayengbam P, Tolenkhomba TC. Seasonal variation of hemato-biochemical parameters in indigenous pig: Zovawk of Mizoram. Vet World. 2015 Jun;8(6):732-7.
Moss AK, Hamarneh SR, Mohamed MMR, Ramasamy S, Yammine H, Patel P, Kaliannan K, Alam SN, Muhammad N, Moaven O, Teshager A, Malo NS, Narisawa S, Millan JL, Shaw Warren H, Hohmann E, Malo MS, Hodin RA. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate. Am J Physiol Gastrointest Liver Physiol. 2013 Mar 15;304(6):G597-604.
Mussa T, Ballester M, Silva-Campa E, Baratelli M, Busquets N, Lecours MP, Dominguez J, Amadori M, Fraile L, Hernandez J, Montoya M. Swine, human or avian influenza viruses differentially activates porcine dendritic cells cytokine profile. Vet Immunol Immunopathol. 2013 Jul 15;154(1-2):25-35.
Nielsen MF, Roelsgaard K, Keiding S, Brodersen K, Moller N, Vyberg M, Vilstrup H. Impaired hepatic counterregulatory response to insulin-induced hypoglycemia in hepatic denervated pigs. J Clin Transl Endocrinol. 2015 Dec 1 25;2(4):131-6.
Owusu-Asiedu A, Nyachoti CM, Marquardt RR. Response of early-weaned pigs to an enterotoxigenic Escherichia coli (K88) challenge when fed diets containing spray-dried porcine plasma or pea protein isolate plus egg yolk antibody zinc oxide fumaric acid or antibiotic. J Anim Sci. 2003 Jul 1;81(7):1790-8.
Perri AM, O’Sullivan TL, Harding JC, Wood RD, Friendship RM. Hematology and biochemistry reference intervals for Ontario commercial nursing pigs close to the time of weaning. Can Vet J. 2017 Apr;58(4):371-6.
Pluske JR. Invited review: Aspects of gastrointestinal tract growth and maturation in the pre-and postweaning period of pigs. J Anim Sci. 2016 Sep 1;94(Suppl 3):399-411.
Rong Y, Lu Z, Zhang H, Zhang L, Song D, Wang Y. Effects of casein glycomacropeptide supplementation on growth performance intestinal morphology intestinal barrier permeability and inflammatory responses in Escherichia coli K88 challenged piglets. Anim Nutr. 2015 Jun 1;1(2):54-9.
Rostagno HS, Albino LFT, Donzele JL, Oliveira RF, Barreto SLT, Hannas MI, Sakamura NK, Perazzo FG, Saraiva A, Abreu MLT, Rodrigues PB, Brito CO. Brazilian Tables for poultry and swine: Food composition and nutritional requirements. 4th ed. Vicosa, Brazil: Universidade Federal de Vicosa; 2017. 488 p.
Saettone V, Biasato I, Radice E, Schiavone A, Bergero D, Meineri G. State-of-the-art of the nutritional alternatives to the use of antibiotics in humans and monogastric animals. Animals. 2020 Dec;10(12): 36 p.
Song ZH, Xiao K, Ke YL, Jiao LF, Hu CH. Zinc oxide influences mitogen-activated protein kinase and TGF-β1 signaling pathways, and enhances intestinal barrier integrity in weaned pigs. Innate Immun. 2015 May;21(4):341-8.
Sun Y, Kim SW. Intestinal challenge with enterotoxigenic Escherichia coli in pigs and nutritional intervention to prevent postweaning diarrhea. Anim Nutr. 2017 Dec 1;3(4):322-30.
Yang KM, Jiang ZY, Zheng CT, Wang L, Yang XF. Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88. J Anim Sci. 2014 Apr 1;92(4):1496-503.
Zhang Y, Ward TL, Ji F, Peng C, Zhu L, Gong L, Dong B. Effects of zinc sources and levels of zinc amino acid complex on growth performance hematological and biochemical parameters in weanling pigs. Asian-Australas J Anim Sci. 2018 Aug;31(8):1267-74.
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti