Effects of selenium supplement forms on the diet–cow–calf transfer of selenium in Simmental cattle

https://doi.org/10.17221/86/2016-CJASCitation:Niwińska B., Andrzejewski M. (2017): Effects of selenium supplement forms on the diet–cow–calf transfer of selenium in Simmental cattle. Czech J. Anim. Sci., 62: 201-210.
download PDF
The aim of this study was to determine the efficiency of diet–cow–calf transfer of selenium (Se) depending on the forms of Se-supplement given to cows of Simmental breed during the last trimester of pregnancy and the first week of lactation. On day 195 of pregnancy the cows were randomly assigned to one of four experimental groups (n = 6), and the newborn calves belonged to the same group as their mothers (n = 6). The cows in the control group received diet without Se-supplement, while the supplemented groups received Se in equivalent doses in a powder form (Se-unprotected) or in a protected form (Se-protected) of sodium selenite or in organic compounds (Se-yeast), the calves received colostrum and milk from their mothers. The data about feed and Se intake, colostrum and milk daily production, Se concentration in colostrum, milk, and cows and calves blood serum were recorded. The diet–cow Se transfer efficiency was estimated as the following ratios: the concentration of Se in cows’ serum after parturition/daily Se intake during prepartum; Se secretion in colostrum/daily Se intake during prepartum; and Se secretion in milk at 7 days of lactation/daily Se intake. The ratios were higher (P ≤ 0.02) in the Se-yeast group than in the other supplemented groups, in the Se-unprotected and Se-protected groups the ratios were similar (P > 0.05). The cow–calf Se transfer efficiency estimated as calves’ serum concentration after birth/cows’ serum concentration after parturition was similar (P > 0.05) in all experimental groups. The results showed that the form of Se supplement modulated the Se transfer from the diet to cows; Se was transferred more efficiently from the Se-yeast than from sodium selenite. The form of Se supplement did not affect the cow–calf Se transfer efficiency.
AOAC (1997): Official Method 996.17. Selenium in feeds and premixes. Continuous hydride generation atomic absorption (HGAA) method. Association of Official Analytical Chemists International, Gaithersburg, USA.
Abdelrahman M.M., Kincaid R.L. (1995): Effect of Selenium Supplementation of Cows on Maternal Transfer of Selenium to Fetal and Newborn Calves. Journal of Dairy Science, 78, 625-630  https://doi.org/10.3168/jds.S0022-0302(95)76673-5
Bates J. M. (2000): Effects of Selenium Deficiency on Tissue Selenium Content, Deiodinase Activity, and Thyroid Hormone Economy in the Rat during Development. Endocrinology, 141, 2490-2500  https://doi.org/10.1210/en.141.7.2490
Bayril T., Yildiz A. S., Akdemir F., Yalcin C., Köse M., Yilmaz O. (2015): The Technical and Financial Effects of Parenteral Supplementation with Selenium and Vitamin E during Late Pregnancy and the Early Lactation Period on the Productivity of Dairy Cattle. Asian-Australasian Journal of Animal Sciences, 28, 1133-1139  https://doi.org/10.5713/ajas.14.0960
Beckett G. J (2005): Selenium and endocrine systems. Journal of Endocrinology, 184, 455-465  https://doi.org/10.1677/joe.1.05971
Brzoska F., Brzezinski W., Brzoska B. (2003): Mineral nutrients in Polish feedstuffs. Part 1: Fodder plants. Annals of Animal Science, 3, 115–126.
Enjalbert F, Lebreton P, Salat O, Schelcher F (1999): Effects of pre- or postpartum selenium supplementation on selenium status in beef cows and their calves.. Journal of Animal Science, 77, 223-  https://doi.org/10.2527/1999.771223x
Galbraith M. L., Vorachek W. R., Estill C. T., Whanger P. D., Bobe G., Davis T. Z., Hall J. A. (2016): Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements. Biological Trace Element Research, 171, 338-343  https://doi.org/10.1007/s12011-015-0560-8
Gooneratne S. R., Christensen D. A. (1989): A survey of maternal and fetal tissue zinc, iron, manganese and selenium concentrations in bovine. Canadian Journal of Animal Science, 69, 151-159  https://doi.org/10.4141/cjas89-018
Hall J. A., Van Saun R. J., Bobe G., Stewart W. C., Vorachek W. R., Mosher W. D., Nichols T., Forsberg N. E., Pirelli G. J. (): Organic and inorganic selenium: I. Oral bioavailability in ewes. Journal of Animal Science, 90, 568-576  https://doi.org/10.2527/jas.2011-4075
Hall Jean A., Bobe Gerd, Vorachek William R., Kasper Katherine, Traber Maret G., Mosher Wayne D., Pirelli Gene J., Gamroth Mike (2014): Effect of Supranutritional Organic Selenium Supplementation on Postpartum Blood Micronutrients, Antioxidants, Metabolites, and Inflammation Biomarkers in Selenium-Replete Dairy Cows. Biological Trace Element Research, 161, 272-287  https://doi.org/10.1007/s12011-014-0107-4
Hefnawy Abd Elghany, Youssef Seham, Aguilera P. Villalobos, Rodríguez C. Valverde, Pérez J. L. Tórtora (2014): The Relationship between Selenium and T3 in Selenium Supplemented and Nonsupplemented Ewes and Their Lambs. Veterinary Medicine International, 2014, 1-6  https://doi.org/10.1155/2014/105236
Herdt Thomas H., Rumbeiha Wilson, Braselton W. Emmett (2000): The Use of Blood Analyses to Evaluate Mineral Status in Livestock. Veterinary Clinics of North America: Food Animal Practice, 16, 423-444  https://doi.org/10.1016/S0749-0720(15)30078-5
Hudman J. F., Glenn A. R. (1984): Selenite uptake and incorporation by Selenomonas ruminatium. Archives of Microbiology, 140, 252-256  https://doi.org/10.1007/BF00454937
Jarrige R. (ed.) (1989): Ruminant Nutrition: Recommended Allowances and Feed Tables. INRA, Paris, France/John Libbey, London, UK.
Lemley C.O., Meyer A.M., Neville T.L., Hallford D.M., Camacho L.E., Maddock-Carlin K.R., Wilmoth T.A., Wilson M.E., Perry G.A., Redmer D.A., Reynolds L.P., Caton J.S., Vonnahme K.A. (2014): Dietary selenium and nutritional plane alter specific aspects of maternal endocrine status during pregnancy and lactation. Domestic Animal Endocrinology, 46, 1-11  https://doi.org/10.1016/j.domaniend.2013.09.006
Mehdi Youcef, Dufrasne Isabelle (2016): Selenium in Cattle: A Review. Molecules, 21, 545-  https://doi.org/10.3390/molecules21040545
MUTH O. H., OLDFIELD J. E., REMMERT L. F., SCHUBERT J. R. (1958): Effects of Selenium and Vitamin E on White Muscle Disease. Science, 128, 1090-1090  https://doi.org/10.1126/science.128.3331.1090
NRC (2001): Nutrient Requirement of Dairy Cattle. 7th Ed. The National Academies Press, Washington, USA.
Panev A., Hauptmanova K., Pavlata L., Pechova A., Filipek J., Dvorak R. (2013): Effect of supplementation of various selenium forms and doses on selected parameters of ruminal fluid and blood in sheep. Czech Journal of Animal Science, 58, 37–46.
Patterson Jennifer D., Burris Walter R., Boling James A., Matthews James C. (2013): Individual Intake of Free-Choice Mineral Mix by Grazing Beef Cows May Be Less Than Typical Formulation Assumptions and Form of Selenium in Mineral Mix Affects Blood Se Concentrations of Cows and Their Suckling Calves. Biological Trace Element Research, 155, 38-48  https://doi.org/10.1007/s12011-013-9768-7
Pavlata L., Slosarkova S., Fleischer P., Pechova A. (2005): Effects of increased diodine supply on the selenium status of kids. Veterinary Medicine–Czech, 50, 186–194.
Pechova A., Sevcikova L., Pavlata L., Dvorak R. (2012): The effect of various forms of selenium supplied to pregnant goats on selected blood parameters and on the concentration of Se in urine and blood of kids at the time of weaning. Veterinarni Medicina, 57, 394–403.
Pilarczyk B., Balicka-Ramisz A., Ramisz A., Osipocic S.V., Tomza A., Wieczorek M. (2005): The investigation of serum selenium levels in farm animals from Western Pomerania and Western Ukraine. Folia Universitatis Agriculturae Stetinensis Zootechnica, 243, 137–142.
Reeves M. A., Hoffmann P. R. (2009): The human selenoproteome: recent insights into functions and regulation. Cellular and Molecular Life Sciences, 66, 2457-2478  https://doi.org/10.1007/s00018-009-0032-4
Rowntree J. E., Hill G. M., Hawkins D. R., Link J. E., Rincker M. J., Bednar G. W., Kreft R. A. (2004): Effect of Se on selenoprotein activity and thyroid hormone metabolism in beef and dairy cows and calves. Journal of Animal Science, 82, 2995-  https://doi.org/10.2527/2004.82102995x
Salman Saeed, Dinse Daniela, Khol-Parisini Annabella, Schafft Helmut, Lahrssen-Wiederholt Monika, Schreiner Matthias, Scharek-Tedin Lydia, Zentek Jürgen (2013): Colostrum and milk selenium, antioxidative capacity and immune status of dairy cows fed sodium selenite or selenium yeast. Archives of Animal Nutrition, 67, 48-61  https://doi.org/10.1080/1745039X.2012.755327
Serra A. B., Nakamura K., Matsui T., Harumoto T., Fujihara T. (1994): Inorganic selenium for sheep I. Selenium balance and selenium levels in the different ruminal fluid fractions. Asian-Australasian Journal of Animal Sciences, 7, 83-89  https://doi.org/10.5713/ajas.1994.83
Stewart W. C., Bobe G., Vorachek W. R., Pirelli G. J., Mosher W. D., Nichols T., Van Saun R. J., Forsberg N. E., Hall J. A. (2012): Organic and inorganic selenium: II. Transfer efficiency from ewes to lambs1. Journal of Animal Science, 90, 577-584  https://doi.org/10.2527/jas.2011-4076
Stowe H D, Herdt T H (1992): Clinical assessment of selenium status of livestock.. Journal of Animal Science, 70, 3928-  https://doi.org/10.2527/1992.70123928x
Suttle N.F. (2010): Mineral Nutrition of Livestock. CABI, Wallingford, UK.
Weiss W.P., Hogan J.S. (2005): Effect of Selenium Source on Selenium Status, Neutrophil Function, and Response to Intramammary Endotoxin Challenge of Dairy Cows. Journal of Dairy Science, 88, 4366-4374  https://doi.org/10.3168/jds.S0022-0302(05)73123-4
Wlodarczyk R., Birkle B. (2010): Rumen protected selenium – the most effective form of selenium supply in ruminants nutrition. Zycie Weterynaryjne, 85, 238–242. (in Polish)
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti