Associations between gene polymorphisms, breeding values, and glucose tolerance test parameters in German Holstein sires

https://doi.org/10.17221/8/2017-CJASCitation:Čítek J., Hanusová L., Brzáková M., Večerek L., Panicke L., Lískovcová L. (2018): Associations between gene polymorphisms, breeding values, and glucose tolerance test parameters in German Holstein sires. Czech J. Anim. Sci., 63: 167-173.
download PDF

The association between several gene polymorphisms, the estimated breeding values for milk performance traits, and glucose metabolism measured by the glucose tolerance test (GTT) in German Holstein sires were evaluated. Polymorphisms in DGAT1, GH1, GHR, FASN, and OLR1 genes were not associated with the GTT. A significant relationship was obtained for the DGAT1 AA/GC polymorphism and estimated breeding values for milk performance (milk yield, fat and protein yield, fat and protein percentage). The polymorphism in GHR was significantly associated with estimated breeding values for fat yield, and the polymorphism in OLR1 with estimated breeding value for protein yield. It shows the importance of the polymorphisms and makes their use in the breeding possible. GTT may be helpful in metabolic analyses, but the gene polymorphisms assessed in our study were not associated with GTT traits and further studies should examine other gene polymorphisms to support the role of GTT for potential breeding purposes.

References:
Bauer J., Přibyl J., Vostrý L. (2016): Contribution of domestic and Interbull records to reliabilities of single-step genomic breeding values in dairy cattle. Czech Journal of Animal Science, 60, 263-267 https://doi.org/10.17221/8240-CJAS
 
Blott S., Kim J.J., Moisio S., Schmidt-Kuntzel A., Cornet A., Berzi P., Cambisano N., Ford C., Grisart B., Johnson D., Karim L., Simon P., Snel R., Spelman R., Wong J., Vilkki J., Georges M., Farnir F., Coppieters W. (2003): Molecular dissection of a quantitative trait locus: A phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics, 163, 253−266.
 
Burkert O. (1998): Analyses of intravenous and modified glucose tolerance test in breeding bulls. Doctor Thesis. Berlin, Germany: Free University Berlin. (in German)
 
Coppieters Wouter, Riquet Juliette, Arranz Juan-José, Berzi Paulette, Cambisano Nadine, Grisart Bernard, Karim Latifa, Marcq Fabienne, Moreau Laurence, Nezer Carine, Simon Patricia, Vanmanshoven Pascal, Wagenaar Danny, Georges Michel (1998): A QTL with major effect on milk yield and composition maps to bovine Chromosome 14. Mammalian Genome, 9, 540-544 https://doi.org/10.1007/s003359900815
 
Di Stasio L., Destefanis G., Brugiapaglia A., Albera A., Rolando A. (2005): Polymorphism of the GHR gene in cattle and relationships with meat production and quality. Animal Genetics, 36, 138-140 https://doi.org/10.1111/j.1365-2052.2005.01244.x
 
Etherton T.D. (2004): Somatotropic function: the somatomedin hypothesis revisited. Journal of Animal Science, 82, E239–E244.
 
Farke Carolin, Meyer Heinrich H D, Bruckmaier Rupert M, Albrecht Christiane (2008): Differential expression of ABC transporters and their regulatory genes during lactation and dry period in bovine mammary tissue. Journal of Dairy Research, 75, 406- https://doi.org/10.1017/S002202990800335X
 
Fischer E., Staufenbiel R., Panicke L. (2003): Metabolic parameters of the glucose tolerance test (GTT) for the additional evaluation of young bulls. Archiv Tierzucht, 46 (Special issue 1), 84–88. (in German)
 
Fontanesi Luca (2016): Metabolomics and livestock genomics: Insights into a phenotyping frontier and its applications in animal breeding. Animal Frontiers, 6, 73-79 https://doi.org/10.2527/af.2016-0011
 
Goddard M. E., Kemper K. E., MacLeod I. M., Chamberlain A. J., Hayes B. J. (2016): Genetics of complex traits: prediction of phenotype, identification of causal polymorphisms and genetic architecture. Proceedings of the Royal Society B: Biological Sciences, 283, 20160569- https://doi.org/10.1098/rspb.2016.0569
 
Grisart B. (): Positional Candidate Cloning of a QTL in Dairy Cattle: Identification of a Missense Mutation in the Bovine DGAT1 Gene with Major Effect on Milk Yield and Composition. Genome Research, 12, 222-231 https://doi.org/10.1101/gr.224202
 
Groeneveld E. (2006): PEST User’s Manual. Institute of Animal Science, Neustadt, Germany.
 
Hanusová L., Míková A., Večerek L., Schroeffelová D., Řehout V., Tothová L., Vernerová K., Hosnedlová B., Čítek J. (2014): Effect of DGAT1 polymorphisms on the estimated breeding values of Czech Simmental sires. Czech Journal of Animal Science, 59, 365-373 https://doi.org/10.17221/7587-CJAS
 
Khatib H., Leonard S.D., Schutzkus V., Luo W., Chang Y.M. (2006): Association of the OLR1 Gene with Milk Composition in Holstein Dairy Cattle. Journal of Dairy Science, 89, 1753-1760 https://doi.org/10.3168/jds.S0022-0302(06)72243-3
 
Komisarek J., Dorynek Z. (2009): Effect of ABCG2, PPARGC1A,
 
OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in Polish Holstein-Friesian bulls. Journal of Applied Genetics, 50, 125−132.
 
Mitra A., Schlee P., Balakrishnan C. R., Pirchner F. (1995): Polymorphisms at growth-hormone and prolactin loci in Indian cattle and buffalo. Journal of Animal Breeding and Genetics, 112, 71-74 https://doi.org/10.1111/j.1439-0388.1995.tb00543.x
 
Morris Chris A., Cullen Neil G., Glass Belinda C., Hyndman Dianne L., Manley Tim R., Hickey Sharon M., McEwan John C., Pitchford Wayne S., Bottema Cynthia D.K., Lee Michael A.H. (2007): Fatty acid synthase effects on bovine adipose fat and milk fat. Mammalian Genome, 18, 64-74 https://doi.org/10.1007/s00335-006-0102-y
 
Panicke L., Staufenbiel R., Fischer E. (2001): Relationship between parameters of the glucose tolerance test (GTT) in young sires and their estimated breeding value (EBV). Czech Journal of Animal Science, 46, 145−151.
 
Pasandideh M., Mohammadabadi M.R., Esmailizadeh A.K., Tarang A. (2016): Association of bovine PPARGC1A and OPN genes with milk production and composition in Holstein cattle. Czech Journal of Animal Science, 60, 97-104 https://doi.org/10.17221/8074-CJAS
 
Pieper Laura, Staufenbiel Rudolf, Christ Jana, Panicke Lothar, Müller Uwe, Brockmann Gudrun A. (2016): Heritability of metabolic response to the intravenous glucose tolerance test in German Holstein Friesian bulls. Journal of Dairy Science, 99, 7240-7246 https://doi.org/10.3168/jds.2015-10672
 
Přibyl J., Bauer J., Čermák V., Pešek P., Přibylová J., Šplíchal J., Vostrá-Vydrová H., Vostrý L., Zavadilová L. (2015): Domestic estimated breeding values and genomic enhanced breeding values of bulls in comparison with their foreign genomic enhanced breeding values. animal, 9, 1635-1642 https://doi.org/10.1017/S1751731115001044
 
Pryce J.E., Parker Gaddis K.L., Koeck A., Bastin C., Abdelsayed M., Gengler N., Miglior F., Heringstad B., Egger-Danner C., Stock K.F., Bradley A.J., Cole J.B. (2016): Invited review: Opportunities for genetic improvement of metabolic diseases. Journal of Dairy Science, 99, 6855-6873 https://doi.org/10.3168/jds.2016-10854
 
Schennink A., Bovenhuis H., Léon-Kloosterziel K. M., Van Arendonk J. A. M., Visker M. H. P. W. (2009): Effect of polymorphisms in the FASN , OLR1 , PPARGC1A , PRL and STAT5A genes on bovine milk-fat composition. Animal Genetics, 40, 909-916 https://doi.org/10.1111/j.1365-2052.2009.01940.x
 
Shi T., Xu Y., Yang M.-J., Zhou Y., Liu M., Lan X.-Y., Lei C.-Z., Qi X.-L., Lin F.-P., Bai Y.-Y., Chen H. (2016): Genetic variation, association analysis, and expression pattern of SMAD3 gene in Chinese cattle. Czech Journal of Animal Science, 61, 209-216 https://doi.org/10.17221/34/2015-CJAS
 
Suchocki T., Wojdak-Maksymiec K., Szyda J. (2016): Using gene networks to identify genes and pathways involved in milk production traits in Polish Holstein dairy cattle. Czech Journal of Animal Science, 61, 526-538 https://doi.org/10.17221/43/2015-CJAS
 
Suravajhala Prashanth, Kogelman Lisette J. A., Kadarmideen Haja N. (2016): Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare. Genetics Selection Evolution, 48, - https://doi.org/10.1186/s12711-016-0217-x
 
Winter A., Kramer W., Werner F. A. O., Kollers S., Kata S., Durstewitz G., Buitkamp J., Womack J. E., Thaller G., Fries R. (2002): Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proceedings of the National Academy of Sciences, 99, 9300-9305 https://doi.org/10.1073/pnas.142293799
 
Zhang S., Knight T. J., Reecy J. M., Beitz D. C. (2008): DNA polymorphisms in bovine fatty acid synthase are associated with beef fatty acid composition. Animal Genetics, 39, 62-70 https://doi.org/10.1111/j.1365-2052.2007.01681.x
 
download PDF

© 2019 Czech Academy of Agricultural Sciences