Genetic variations of the bovine MX1 and their association with mastitis

https://doi.org/10.17221/97/2015-CJASCitation:Chen N., Wang F., Yu N., Gao Y., Huang J., Huang Y., Lan X., Lei C., Chen H., Dang R. (2017): Genetic variations of the bovine MX1 and their association with mastitis. Czech J. Anim. Sci., 62: 157-167.
supplementary materialdownload PDF
The primary agent of mastitis is a wide spectrum of bacterial strains; however, viral-related mastitis has also been reported. The MX dynamin-like GTPase 1 (MX1) gene has been demonstrated to confer positive antiviral responses to many viruses, and may be a suitable candidate gene for the study of disease resistance in dairy cattle. The present study was conducted to investigate the genetic diversity of the MX1 gene in Chinese cattle breeds and its effects on mastitis in Holstein cows. First, polymorphisms were identified in the complete coding region of the bovine MX1 gene in 14 Chinese cattle breeds. An association study was then carried out, utilizing polymorphisms detected in Holstein cows to determine the associations of these single nucleotide polymorphisms (SNPs) with mastitis. We identified 13 previously reported SNPs in Chinese domestic cattle and four of them in Holstein cattle. A novel 12 bp indel was also discovered in Holstein cattle. In addition, haplotype frequencies and linkage disequilibrium of four SNPs detected in Holstein cows were investigated. Analysis of these four SNPs in Chinese Holstein cows revealed two SNPs (g.143181370 T>C and g.143182088 C>T)
significantly (P < 0.05) associated with somatic cell score (SCS). The results indicated that SNPs in the MX1 gene might contribute to the variations observed in the SCS of dairy cattle. Therefore, implementation of these two mutations in selection indexes of the dairy industry might be beneficial by favouring the selection individuals with lower SCS.
References:
ASANO Atsushi, KO Jae Hong, MOROZUMI Takeya, HAMASHIMA Noriyuki, WATANABE Tomomasa (): Polymorphisms and the Antiviral Property of Porcine Mx1 Protein. Journal of Veterinary Medical Science, 64, 1085-1089  https://doi.org/10.1292/jvms.64.1085
 
Carlén E., Strandberg E., Roth A. (2004): Genetic Parameters for Clinical Mastitis, Somatic Cell Score, and Production in the First Three Lactations of Swedish Holstein Cows. Journal of Dairy Science, 87, 3062-3070  https://doi.org/10.3168/jds.S0022-0302(04)73439-6
 
Chamberlain A.J., Hayes B.J., Savin K., Bolormaa S., McPartlan H.C., Bowman P.J., Van Der Jagt C., MacEachern S., Goddard M.E. (2012): Validation of single nucleotide polymorphisms associated with milk production traits in dairy cattle. Journal of Dairy Science, 95, 864-875  https://doi.org/10.3168/jds.2010-3786
 
Chen N. B., Ma Y., Yang T., Lin F., Fu W. W., Xu Y. J., Li F., Li J. Y., Gao S. X. (2015): Tissue expression and predicted protein structures of the bovine ANGPTL3 and association of novel SNPs with growth and meat quality traits. animal, 9, 1285-1297  https://doi.org/10.1017/S1751731115000658
 
Daetwyler H.D., Schenkel F.S., Sargolzaei M., Robinson J.A.B. (2008): A Genome Scan to Detect Quantitative Trait Loci for Economically Important Traits in Holstein Cattle Using Two Methods and a Dense Single Nucleotide Polymorphism Map. Journal of Dairy Science, 91, 3225-3236  https://doi.org/10.3168/jds.2007-0333
 
Diaz-San Segundo F., Dias C. C. A., Moraes M. P., Weiss M., Perez-Martin E., Owens G., Custer M., Kamrud K., de los Santos T., Grubman M. J. (): Venezuelan Equine Encephalitis Replicon Particles Can Induce Rapid Protection against Foot-and-Mouth Disease Virus. Journal of Virology, 87, 5447-5460  https://doi.org/10.1128/JVI.03462-12
 
ELLINWOOD N. MATTHEW, McCUE JESICA M., GORDY PAUL W., BOWEN RICHARD A. (1998): Cloning and Characterization of cDNAs for a Bovine ( Bos taurus ) Mx Protein. Journal of Interferon & Cytokine Research, 18, 745-755  https://doi.org/10.1089/jir.1998.18.745
 
Ellinwood N. M., Berryere T. G., Fournier B. P., Bowen R. A., Buchanan F. C., Schmutz S. M. (1999): MX1 maps to cattle chromosome 1. Animal Genetics, 30, 164-165  https://doi.org/10.1046/j.1365-2052.1999.00382-6.x
 
Gérardin Joël A., Baise Etienne A., Pire Grégory A., Leroy Michaël P.-P., Desmecht Daniel J.-M. (2004): Genomic structure, organisation, and promoter analysis of the bovine (Bos taurus) Mx1 gene. Gene, 326, 67-75  https://doi.org/10.1016/j.gene.2003.10.006
 
Gordien E., Rosmorduc O., Peltekian C., Garreau F., Brechot C., Kremsdorf D. (2001): Inhibition of Hepatitis B Virus Replication by the Interferon-Inducible MxA Protein. Journal of Virology, 75, 2684-2691  https://doi.org/10.1128/JVI.75.6.2684-2691.2001
 
Green M.R., Sambrook J. (2012): Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, USA.
 
Haller Otto, Staeheli Peter, Schwemmle Martin, Kochs Georg (2015): Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends in Microbiology, 23, 154-163  https://doi.org/10.1016/j.tim.2014.12.003
 
Heyen D., Weller J., Ron M., Band M., Beever J., Feldmesser E., Da Y., Wiggans G., VanRaden P., Lewin H. (1999): A genome scan for QTL influencing milk production and health traits in dairy cattle. Physiological Genomics, 1, 165–175.
 
Jin H.K., Yamashita T., Ochiai K., Haller O., Watanabe T. (1998): Characterization and expression of the Mx1 gene in wild mouse species. Biochemical Genetics, 36, 311–322. https://doi.org/10.1023/A:1018741312058
 
Ko J.-H., Jin H.-K., Asano A., Takada A., Ninomiya A., Kida H., Hokiyama H., Ohara M., Tsuzuki M., Nishibori M., Mizutani M., Watanabe T. (2002): Polymorphisms and the Differential Antiviral Activity of the Chicken Mx Gene. Genome Research, 12, 595-601  https://doi.org/10.1101/gr.210702
 
Li Yanping, Liang Sen, Liu Hao, Sun Yi, Kang Li, Jiang Yunliang (2015): Identification of a short interspersed repetitive element insertion polymorphism in the porcine MX1 promoter associated with resistance to porcine reproductive and respiratory syndrome virus infection. Animal Genetics, 46, 437-440  https://doi.org/10.1111/age.12316
 
Lund M.S., Sahana G., Andersson-Eklund L., Hastings N., Fernandez A., Schulman N., Thomsen B., Viitala S., Williams J.L., Sabry A., Viinalass H., Vilkki J. (2007): Joint Analysis of Quantitative Trait Loci for Clinical Mastitis and Somatic Cell Score on Five Chromosomes in Three Nordic Dairy Cattle Breeds. Journal of Dairy Science, 90, 5282-5290  https://doi.org/10.3168/jds.2007-0177
 
Melen K., Ronni T., Broni B., Krug R.M., Von Bonsdorff C., Julkunen I. (1992): Interferon-induced Mx proteins form oligomers and contain a putative leucine zipper. Journal of Biological Chemistry, 267, 25898–25907.
 
Muller-Doblies D., Arquint A., Schaller P., Heegaard P. M. H., Hilbe M., Albini S., Abril C., Tobler K., Ehrensperger F., Peterhans E., Ackermann M., Metzler A. (2004): Innate Immune Responses of Calves during Transient Infection with a Noncytopathic Strain of Bovine Viral Diarrhea Virus. Clinical and Vaccine Immunology, 11, 302-312  https://doi.org/10.1128/CDLI.11.2.302-312.2004
 
Nakatsu Y., Yamada K., Ueda J., Onogi A., Ables G. P., Nishibori M., Hata H., Takada A., Sawai K., Tanabe Y., Morita M., Daikohara M., Watanabe T. (2004): Genetic polymorphisms and antiviral activity in the bovine MX1 gene. Animal Genetics, 35, 182-187  https://doi.org/10.1111/j.1365-2052.2004.01125.x
 
Nash D.L., Rogers G.W., Cooper J.B., Hargrove G.L., Keown J.F. (2003): Heritability of Intramammary Infections at First Parturition and Relationships with Sire Transmitting Abilities for Somatic Cell Score, Udder Type Traits, Productive Life, and Protein Yield. Journal of Dairy Science, 86, 2684-2695  https://doi.org/10.3168/jds.S0022-0302(03)73864-8
 
Rodriguez-Zas S.L., Southey B.R., Heyen D.W., Lewin H.A. (2002): Interval and Composite Interval Mapping of Somatic Cell Score, Yield, and Components of Milk in Dairy Cattle. Journal of Dairy Science, 85, 3081-3091  https://doi.org/10.3168/jds.S0022-0302(02)74395-6
 
Rupp Rachel, Boichard Didier (2003): Genetics of resistance to mastitis in dairy cattle. Veterinary Research, 34, 671-688  https://doi.org/10.1051/vetres:2003020
 
Seyama T., Ko J. H., Ohe M., Sasaoka N., Okada A., Gomi H., Yoneda A., Ueda J., Nishibori M., Okamoto S., Maeda Y., Watanabe T. (2006): Population Research of Genetic Polymorphism at Amino Acid Position 631 in Chicken Mx Protein with Differential Antiviral Activity. Biochemical Genetics, 44, 432-443  https://doi.org/10.1007/s10528-006-9040-3
 
YONG Yong, HE Lin (2005): SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Research, 15, 97-98  https://doi.org/10.1038/sj.cr.7290272
 
Shook George E. (1993): Genetic Improvement of Mastitis Through Selection on Somatic Cell Count. Veterinary Clinics of North America: Food Animal Practice, 9, 563-577  https://doi.org/10.1016/S0749-0720(15)30622-8
 
Staeheli P, Grob R, Meier E, Sutcliffe J G, Haller O (1988): Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation.. Molecular and Cellular Biology, 8, 4518-4523  https://doi.org/10.1128/MCB.8.10.4518
 
Verhelst J., Hulpiau P., Saelens X. (2013): Mx Proteins: Antiviral Gatekeepers That Restrain the Uninvited. Microbiology and Molecular Biology Reviews, 77, 551-566  https://doi.org/10.1128/MMBR.00024-13
 
Verhelst Judith, Spitaels Jan, Nürnberger Cindy, De Vlieger Dorien, Ysenbaert Tine, Staeheli Peter, Fiers Walter, Saelens Xavier, Dermody T. S. (2015): Functional Comparison of Mx1 from Two Different Mouse Species Reveals the Involvement of Loop L4 in the Antiviral Activity against Influenza A Viruses. Journal of Virology, 89, 10879-10890  https://doi.org/10.1128/JVI.01744-15
 
Wang S. J., Liu W. J., Sargent C. A., Zhao S. H., Liu H. B., Liu X. D., Wang C., Hua G. H., Yang L. G., Affara N. A., Zhang S. J. (2012): Effects of the polymorphisms of Mx1, BAT2 and CXCL12 genes on immunological traits in pigs. Molecular Biology Reports, 39, 2417-2427  https://doi.org/10.1007/s11033-011-0992-y
 
supplementary materialdownload PDF

© 2020 Czech Academy of Agricultural Sciences