Modelling the growth of rearing cattle

https://doi.org/10.17221/98/2021-CJASCitation:

Unterauer H., Brunner N., Kühleitner M. (2021): Modelling the growth of rearing cattle. Czech J. Anim. Sci., 66 (2021): 441-449

download PDF

Scientific growth literature often uses the models of Brody, Gompertz, Verhulst, and von Bertalanffy. The versatile five-parameter Bertalanffy-Pütter (BP) model generalizes them. Using the least-squares method, we fitted the BP model to mass-at-age data of 161 calves, cows, bulls, and oxen of cattle breeds that are common in Austria and Southern Germany. We used three measures to assess the goodness of fit: R-squared, normalized root-mean squared error, and the Akaike information criterion together with a correction for sample size. Although the BP model improved the fit of the linear growth model considerably in terms of R-squared, the better fit did not, in general, justify the use of its additional parameters, because most of the data had a non-sigmoidal character. In terms of the Akaike criterion, we could identify only a small core of data (15%) where sigmoidal models were indispensable.

 

 

References:
Arango JA, Van Vleck LD. Size of beef cows: Early ideas, new developments. Genet Mol Res. 2002 Mar;1(1):51-63. https://doi.org/10.4238/vol1-1gmr005
 
Brunner N, Kuhleitner M. The growth of domestic goats and sheep: A meta study with Bertalanffy-Putter models. Vet Anim Sci. 2020 Dec;10: [10 p.]. https://doi.org/10.1016/j.vas.2020.100135
 
Brunner N, Kuhleitner M, Nowak WG, Renner-Martin K, Scheicher K. Comparing growth patterns of three species: Similarities and differences. PLoS One. 2019;14(10): 9 p.  https://doi.org/10.1371/journal.pone.0224168
 
Brunner N, Kuhleitner M, Renner-Martin K. Bertalanffy-Putter models for avian growth. PLoS One. 2021 Apr 26;16(4): 18 p.  https://doi.org/10.1371/journal.pone.0250515
 
Burnham KP, Anderson DR. Multi-model inference. Understanding AIC and BIC in model selection. Sociol Methods Res. 2004 Nov;33(2):261-304. https://doi.org/10.1177/0049124104268644
 
FAO – Food and Agriculture Organization. Livestock Systems [Internet]. Roe (Italy): Food and Agriculture Organization of the United Nations. 2021 Feb [cited 2021 Feb 19]. Available from: www.fao.org/livestock-systems.
 
Goldberg V, Ravagnolo O. Description of the growth curve for Angus pasture-fed cows under extensive systems. J Anim Sci. 2015 Sep 1;93(9):4285-90. https://doi.org/10.2527/jas.2015-9208
 
Kidd KK, Pirchner F. Genetic relationships of Austrian cattle breeds. Anim Blood Grps Biochem Genet. 1971 Aug; 2(3):145-58. https://doi.org/10.1111/j.1365-2052.1971.tb01215.x
 
Kuhleitner M, Brunner N, Nowak WG, Renner-Martin K, Scheicher K. Best-fitting growth curves of the von Bertalanffy-Putter type. Poult Sci. 2019 Sep 1;98(9):3587-92. https://doi.org/10.3382/ps/pez122
 
Marusic M, Bajzer Z. Generalized two-parameter equations of growth. J Math Anal Appl. 1993 Nov 15;179(2):446-62. https://doi.org/10.1006/jmaa.1993.1361
 
Mota RR, Marques LFA, Lopes PS, da Silva LP, Hidalgo AM, Leite CDS, Torres RA. Random regression models in the evaluation of the growth curve of Simbrasil beef cattle. Genet Mol Res. 2013 May;12:528-6. https://doi.org/10.4238/2013.February.27.2
 
Motulsky H, Christopoulos A. Fitting models to biological data using linear and nonlinear regression: A practical guide to curve fitting. New York: Oxford University Press; 2003. 351 p.
 
Mullins Y, Keogh K, Kenny DA, Kelly A, O’ Boyle P, Waters SM. Label-free quantitative proteomic analysis of M. longissimus dorsi from cattle during dietary restriction and subsequent compensatory growth. Sci Rep. 2020;10: 13 p.  https://doi.org/10.1038/s41598-020-59412-6
 
Nogales S, Calderón J, Lupi TM, Bressan MC, Delgado JV, Camacho ME. A comparison of the growth performance between cattle reared in conventional systems and in feral conditions. Livest Sci. 2017 Dec 1;206:154-60.  https://doi.org/10.1016/j.livsci.2017.10.026
 
Ohnishi S, Yamakawa T, Akamine T. On the analytical solution for the Putter-Bertalanffy growth equation. J Theor Biol. 2014 Feb 21;343:174-7. https://doi.org/10.1016/j.jtbi.2013.10.017
 
Putter A. Studien uber physiologische Ahnlichkeit. VI. Wachstumsahnlichkeiten. Pflugers Arch Gesamte Physiol Menschen Tiere. 1920 Dec;180(1):298-340. German. https://doi.org/10.1007/BF01755094
 
Renner-Martin K, Brunner N, Kuhleitner M, Nowak WG, Scheicher K. On the exponent in the Von Bertalanffy growth model. PeerJ. 2018 Jan 4;6: [26 p.].  https://doi.org/10.7717/peerj.4205
 
Speidel SE. Random regression models for the prediction of days to finish in beef cattle [dissertation]. [Colorado]: Colorado State University; 2011. 258 p.
 
Spiess AN, Neumeyer N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. BMC Pharmacol. 2010 Jun 7;10(1): 12 p.  https://doi.org/10.1186/1471-2210-10-6
 
Tjorve KMC, Tjorve E. A proposed family of unified models for sigmoidal growth. Ecol Modell. 2017 Sep 10;359:117-27. https://doi.org/10.1016/j.ecolmodel.2017.05.008
 
Unterauer H. Optimale Wachstumsmodelle vom Typ Bertalanffy-Putter fur Rinder [master’s thesis]. [Vienna]: University of Natural Resources and Life Sciences; 2021. 81 p. German.
 
Upperman LR. Estimation of breed effects and genetic parameters for age at slaughter and days to finish in a multibreed beef cattle population [dissertation]. [Nebraska]: University of Nebraska; 2021. 105 p.
 
Vidal RVV. Applied simulated annealing. Berlin: Springer-Verlag; 1993. 355 p. (Lecture notes in economics and mathematical systems; vol. 396).
 
ZAR – Zentrale Arbeitsgemeinschaft Osterreichischer Rinderzuchter. Rinderzucht in Osterreich [Internet]. Wien: Zentrale Arbeitsgemeinschaft Osterreichischer Rinderzuchter; 2014 [cited 2014 Apr 10]. Available from: https://zar.at/Rinderzucht-in-Oesterreich.html. German.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti