Association of bovine PPARGC1A and OPN genes with milk production and composition in Holstein cattle

https://doi.org/10.17221/8074-CJASCitation:Pasandideh M., Mohammadabadi M.R., Esmailizadeh A.K., Tarang A. (2015): Association of bovine PPARGC1A and OPN genes with milk production and composition in Holstein cattle. Czech J. Anim. Sci., 60: 97-104.
download PDF
Several studies have reported quantitative trait loci on chromosome 6 affecting milk production and composition traits in dairy cattle. Osteopontin (OPN) and peroxisome proliferator activated receptor-γ coactivator-1α (PPARGC1A) genes have been located on this chromosome and identified as positional candidates for milk traits. We investigated the associations of single nucleotide polymorphism (SNP) T>C at position 1892 and SNP A>C at position 3359 in PPARGC1A gene as well as SNP C>T at position 8514 in OPN gene with milk production and composition. Hence, 398 Iranian Holstein cows were genotyped through polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). The Least Squares methods were used to examine the effects of genotypes on milk traits. The frequencies of the C allele at position 1892, A allele at position 3359, and T allele at position 8514 were 0.56, 0.64, and 0.53, respectively. In this study, c.1892T>C genotypes indicated significant associations with milk fat content adjusted for two milkings per day (FATP2X; %), estimated breeding value for milk (EBVM; kg), milk protein yield adjusted for mature body weight (PROME; kg), milk protein yield adjusted for 305 days (PRO305; kg) (P < 0.05), and estimated breeding value for milk fat content (EBVFP; %) (P < 0.01). There were significant associations between c.3359A>C genotypes and FATP2X, EBVFP (P < 0.01). Moreover, significant associations were shown between c.8514C>T genotypes in OPN gene and FATP2X (P < 0.05), and PROPER305 (P < 0.01). Thus, these SNPs would provide an excellent opportunity for marker assisted selection programs in dairy cattle.
References:
Alim M.A., Fan Y., Xie Y., Wu X., Sun D., Zhang Y., Zhang S., Zhang Y., Zhang Q., Lin L. (2012): Single nucleotide polymorphism (SNP) in PPARGC1A gene associates milk production traits in Chinese Holstein cattle. Pakistan Veterinary Journal, 32, 609–612.
 
Ashwell M.S., Heyen D.W., Sonstegard T.S., Van Tassell C.P., Da Y., VanRaden P.M., Ron M., Weller J.I., Lewin H.A. (2004): Detection of Quantitative Trait Loci Affecting Milk Production, Health, and Reproductive Traits in Holstein Cattle. Journal of Dairy Science, 87, 468-475  https://doi.org/10.3168/jds.S0022-0302(04)73186-0
 
Bayless Kayla J., Davis George E., Meininger Gerald A. (1997): Isolation and Biological Properties of Osteopontin from Bovine Milk. Protein Expression and Purification, 9, 309-314  https://doi.org/10.1006/prep.1996.0699
 
Chorev Michal, Carmel Liran (2012): The Function of Introns. Frontiers in Genetics, 3, -  https://doi.org/10.3389/fgene.2012.00055
 
Denhardt David T., Noda Masaki, O’Regan Anthony W., Pavlin Dubravko, Berman Jeffrey S. (2001): Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. Journal of Clinical Investigation, 107, 1055-1061  https://doi.org/10.1172/JCI12980
 
Falconer D.S., Mackay T.F.C. (1996): Introduction to Quantitative Genetics. Addison Wesley Longman Ltd., Harlow, UK.
 
Hill W. G., Robertson Alan (1968): Linkage disequilibrium in finite populations. Theoretical and Applied Genetics, 38, 226-231  https://doi.org/10.1007/BF01245622
 
Khatib H., Zaitoun I., Wiebelhaus-Finger J., Chang Y.M., Rosa G.J.M. (2007): The Association of Bovine PPARGC1A and OPN Genes with Milk Composition in Two Independent Holstein Cattle Populations. Journal of Dairy Science, 90, 2966-2970  https://doi.org/10.3168/jds.2006-812
 
Khatkar Mehar S, Thomson Peter C, Tammen Imke, Raadsma Herman W (2004): Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genetics Selection Evolution, 36, 163-  https://doi.org/10.1186/1297-9686-36-2-163
 
Knott S. A., Elsen J. M., Haley C. S. (1996): Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theoretical and Applied Genetics, 93-93, 71-80  https://doi.org/10.1007/BF00225729
 
Komisarek J., Dorynek Z. (2009): Effect of ABCG2, PPARGC1A,
 
OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in Polish Holstein-Friesian bulls. Journal of Applied Genetics, 50, 125–132.
 
Kowalewska-Luczak I., Kulig H., Kmiec M. (2010): Associations between the bovine PPARGC1A gene and milk production traits. Czech Journal of Animal Science, 55, 195–199.
 
Leonard S., Khatib H., Schutzkus V., Chang Y.M., Maltecca C. (2005): Effects of the Osteopontin Gene Variants on Milk Production Traits in Dairy Cattle. Journal of Dairy Science, 88, 4083-4086  https://doi.org/10.3168/jds.S0022-0302(05)73092-7
 
Liang H., Ward W. F. (2006): PGC-1 : a key regulator of energy metabolism. AJP: Advances in Physiology Education, 30, 145-151  https://doi.org/10.1152/advan.00052.2006
 
Nemir M., Bhattacharyya D., Li X., Singh K., Mukherjee A. B., Mukherjee B. B. (): Targeted Inhibition of Osteopontin Expression in the Mammary Gland Causes Abnormal Morphogenesis and Lactation Deficiency. Journal of Biological Chemistry, 275, 969-976  https://doi.org/10.1074/jbc.275.2.969
 
Olsen H. G. (2004): Mapping of a Milk Production Quantitative Trait Locus to a 420-kb Region on Bovine Chromosome 6. Genetics, 169, 275-283  https://doi.org/10.1534/genetics.104.031559
 
Pareek C.S., Czarnik U., Pierzchala M., Zwierzchowski L. (2008): An association between the C>T single nucleotide polymorphism within intron IV of osteopontin encoding gene (SPP1) and body weight of growing Polish Holstein-Friesian cattle. Animal Science Papers and Reports, 26, 251–257.
 
Rodriguez-Zas S.L., Southey B.R., Heyen D.W., Lewin H.A. (2002): Detection of Quantitative Trait Loci Influencing Dairy Traits Using a Model for Longitudinal Data. Journal of Dairy Science, 85, 2681-2691  https://doi.org/10.3168/jds.S0022-0302(02)74354-3
 
Ron M., Kliger D., Feldmesser E., Seroussi E., Ezra E., Weller J.I. (2001): Multiple quantitative trait locus analysis of bovine chromosome 6 in the Israeli Holstein population by a daughter design. Genetics, 159, 727–735.
 
Schennink A., Bovenhuis H., L��on-Kloosterziel K. M., van Arendonk J. A. M., Visker M. H. P. W. (2009): Effect of polymorphisms in the FASN , OLR1 , PPARGC1A , PRL and STAT5A genes on bovine milk-fat composition. Animal Genetics, 40, 909-916  https://doi.org/10.1111/j.1365-2052.2009.01940.x
 
Schnabel R. D., Kim J.-J., Ashwell M. S., Sonstegard T. S., Van Tassell C. P., Connor E. E., Taylor J. F. (): Fine-mapping milk production quantitative trait loci on BTA6: Analysis of the bovine osteopontin gene. Proceedings of the National Academy of Sciences, 102, 6896-6901  https://doi.org/10.1073/pnas.0502398102
 
Senger Donald R., Perruzzi Carole A., Papadopoulos Ageliki, Tenen Daniel G. (1989): Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 996, 43-48  https://doi.org/10.1016/0167-4838(89)90092-7
 
Weikard R. (2005): The bovine PPARGC1A gene: molecular characterization and association of an SNP with variation of milk fat synthesis. Physiological Genomics, 21, 1-13  https://doi.org/10.1152/physiolgenomics.00103.2004
 
White S. N., Casas E., Allan M. F., Keele J. W., Snelling W. M., Wheeler T. L., Shackelford S. D., Koohmaraie M., Smith T. P. L. (2007): Evaluation in beef cattle of six deoxyribonucleic acid markers developed for dairy traits reveals an osteopontin polymorphism associated with postweaning growth. Journal of Animal Science, 85, 1-10  https://doi.org/10.2527/jas.2006-314
 
Alim M.A., Fan Y., Xie Y., Wu X., Sun D., Zhang Y., Zhang S., Zhang Y., Zhang Q., Lin L. (2012): Single nucleotide polymorphism (SNP) in PPARGC1A gene associates milk production traits in Chinese Holstein cattle. Pakistan Veterinary Journal, 32, 609–612.
 
Ashwell M.S., Heyen D.W., Sonstegard T.S., Van Tassell C.P., Da Y., VanRaden P.M., Ron M., Weller J.I., Lewin H.A. (2004): Detection of Quantitative Trait Loci Affecting Milk Production, Health, and Reproductive Traits in Holstein Cattle. Journal of Dairy Science, 87, 468-475  https://doi.org/10.3168/jds.S0022-0302(04)73186-0
 
Bayless Kayla J., Davis George E., Meininger Gerald A. (1997): Isolation and Biological Properties of Osteopontin from Bovine Milk. Protein Expression and Purification, 9, 309-314  https://doi.org/10.1006/prep.1996.0699
 
Chorev Michal, Carmel Liran (2012): The Function of Introns. Frontiers in Genetics, 3, -  https://doi.org/10.3389/fgene.2012.00055
 
Denhardt David T., Noda Masaki, O’Regan Anthony W., Pavlin Dubravko, Berman Jeffrey S. (2001): Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. Journal of Clinical Investigation, 107, 1055-1061  https://doi.org/10.1172/JCI12980
 
Falconer D.S., Mackay T.F.C. (1996): Introduction to Quantitative Genetics. Addison Wesley Longman Ltd., Harlow, UK.
 
Hill W. G., Robertson Alan (1968): Linkage disequilibrium in finite populations. Theoretical and Applied Genetics, 38, 226-231  https://doi.org/10.1007/BF01245622
 
Khatib H., Zaitoun I., Wiebelhaus-Finger J., Chang Y.M., Rosa G.J.M. (2007): The Association of Bovine PPARGC1A and OPN Genes with Milk Composition in Two Independent Holstein Cattle Populations. Journal of Dairy Science, 90, 2966-2970  https://doi.org/10.3168/jds.2006-812
 
Khatkar Mehar S, Thomson Peter C, Tammen Imke, Raadsma Herman W (2004): Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genetics Selection Evolution, 36, 163-  https://doi.org/10.1186/1297-9686-36-2-163
 
Knott S. A., Elsen J. M., Haley C. S. (1996): Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theoretical and Applied Genetics, 93-93, 71-80  https://doi.org/10.1007/BF00225729
 
Komisarek J., Dorynek Z. (2009): Effect of ABCG2, PPARGC1A,
 
OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in Polish Holstein-Friesian bulls. Journal of Applied Genetics, 50, 125–132.
 
Kowalewska-Luczak I., Kulig H., Kmiec M. (2010): Associations between the bovine PPARGC1A gene and milk production traits. Czech Journal of Animal Science, 55, 195–199.
 
Leonard S., Khatib H., Schutzkus V., Chang Y.M., Maltecca C. (2005): Effects of the Osteopontin Gene Variants on Milk Production Traits in Dairy Cattle. Journal of Dairy Science, 88, 4083-4086  https://doi.org/10.3168/jds.S0022-0302(05)73092-7
 
Liang H., Ward W. F. (2006): PGC-1 : a key regulator of energy metabolism. AJP: Advances in Physiology Education, 30, 145-151  https://doi.org/10.1152/advan.00052.2006
 
Nemir M., Bhattacharyya D., Li X., Singh K., Mukherjee A. B., Mukherjee B. B. (): Targeted Inhibition of Osteopontin Expression in the Mammary Gland Causes Abnormal Morphogenesis and Lactation Deficiency. Journal of Biological Chemistry, 275, 969-976  https://doi.org/10.1074/jbc.275.2.969
 
Olsen H. G. (2004): Mapping of a Milk Production Quantitative Trait Locus to a 420-kb Region on Bovine Chromosome 6. Genetics, 169, 275-283  https://doi.org/10.1534/genetics.104.031559
 
Pareek C.S., Czarnik U., Pierzchala M., Zwierzchowski L. (2008): An association between the C>T single nucleotide polymorphism within intron IV of osteopontin encoding gene (SPP1) and body weight of growing Polish Holstein-Friesian cattle. Animal Science Papers and Reports, 26, 251–257.
 
Rodriguez-Zas S.L., Southey B.R., Heyen D.W., Lewin H.A. (2002): Detection of Quantitative Trait Loci Influencing Dairy Traits Using a Model for Longitudinal Data. Journal of Dairy Science, 85, 2681-2691  https://doi.org/10.3168/jds.S0022-0302(02)74354-3
 
Ron M., Kliger D., Feldmesser E., Seroussi E., Ezra E., Weller J.I. (2001): Multiple quantitative trait locus analysis of bovine chromosome 6 in the Israeli Holstein population by a daughter design. Genetics, 159, 727–735.
 
Schennink A., Bovenhuis H., L��on-Kloosterziel K. M., van Arendonk J. A. M., Visker M. H. P. W. (2009): Effect of polymorphisms in the FASN , OLR1 , PPARGC1A , PRL and STAT5A genes on bovine milk-fat composition. Animal Genetics, 40, 909-916  https://doi.org/10.1111/j.1365-2052.2009.01940.x
 
Schnabel R. D., Kim J.-J., Ashwell M. S., Sonstegard T. S., Van Tassell C. P., Connor E. E., Taylor J. F. (): Fine-mapping milk production quantitative trait loci on BTA6: Analysis of the bovine osteopontin gene. Proceedings of the National Academy of Sciences, 102, 6896-6901  https://doi.org/10.1073/pnas.0502398102
 
Senger Donald R., Perruzzi Carole A., Papadopoulos Ageliki, Tenen Daniel G. (1989): Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 996, 43-48  https://doi.org/10.1016/0167-4838(89)90092-7
 
Weikard R. (2005): The bovine PPARGC1A gene: molecular characterization and association of an SNP with variation of milk fat synthesis. Physiological Genomics, 21, 1-13  https://doi.org/10.1152/physiolgenomics.00103.2004
 
White S. N., Casas E., Allan M. F., Keele J. W., Snelling W. M., Wheeler T. L., Shackelford S. D., Koohmaraie M., Smith T. P. L. (2007): Evaluation in beef cattle of six deoxyribonucleic acid markers developed for dairy traits reveals an osteopontin polymorphism associated with postweaning growth. Journal of Animal Science, 85, 1-10  https://doi.org/10.2527/jas.2006-314
 
download PDF

© 2019 Czech Academy of Agricultural Sciences