Influence of the addition of exogenous xylanase with or without pre-incubation on the in vitro ruminal fermentation of three fibrous feeds

https://doi.org/10.17221/52/2015-CJASCitation:Elghandour M.M.Y., Kholif A.E., Hernández J., Mariezcurrena M.D., López S., Camacho L.M., Márquez O., Salem A.Z.M. (2016): Influence of the addition of exogenous xylanase with or without pre-incubation on the in vitro ruminal fermentation of three fibrous feeds. Czech J. Anim. Sci., 61: 262-272.
download PDF

The effects of the exogenous fibrolytic enzyme (ENZ) commercial preparation Dyadic® xylanase PLUS (Dyadic International, Inc., Jupiter, USA), containing endo-1,4-β-d-xylanase, on ruminal fermentation of maize stover, oat straw, and sugarcane bagasse were examined using the in vitro gas production (GP) technique. The ENZ commercial preparation was added at 0 (control), 60 (low), 120 (medium), and 240 (high) µg/g dry matter of substrate, and at two times of application (direct addition just before fermentation or with a 72-h pre-incubation before fermentation). Ruminal GP volumes were recorded at 2, 4, 6, 8, 10, 12, 14, 24, and 48 h of incubation, and substrate degradability and concentration of fermentation end-products (volatile fatty acids, ammonia, methane) in the cultures were determined at 48 h of incubation. Increased (P < 0.05) GP volume was observed in fibrous feeds treated with ENZ compared with untreated substrates. The pre-incubation vs the direct addition of ENZ resulted in greater GP volume (P < 0.05) with the three tested feeds. Enzyme addition decreased (P < 0.05) rumen pH compared to control when maize stover and sugarcane bagasse were incubated. Ammonia-N and total volatile fatty acids (VFA) were not affected (P > 0.05) by ENZ application in maize stover and oat straw. However, total and individual VFA concentrations, and CH4 and CO2 volumes were greater (P < 0.05) when sugarcane bagasse was incubated with 240 µg ENZ/g (P < 0.05). It can be concluded that the application of endo-1,4-β-d-xylanase enhances rumen fermentation of roughages, although the magnitude of the effects depends on the fibrous substrate fermented, the time of application, and the amount of enzyme added.

References:
AOAC (1997): Official Methods of Analysis. 16th Ed. Arlington, USA.
 
Bernfeld P. (1955): Amylases, alpha and beta. Methods in Enzymology, 1, 149–158.
 
Diaz A., Carro M.D., Saro C., Mateos I., Odongo E., Ranilla M.J. (2013): In vitro evaluation of commercial fibrolytic enzymes for improving the nutritive value of low-quality forages. Animal Nutrition and Feed Technology, 13, 461–476.
 
Elghandour M.M.Y., Salem A.Z.M., Gonzalez-Ronquillo M., Bórquez J.L., Gado H.M., Odongo N.E., Peñuelas C.G. (2013): Effects of exogenous enzymes on in vitro gas production kinetics and ruminal fermentation of four fibrous feeds. Animal Feed Science and Technology, 179, 46-53 https://doi.org/10.1016/j.anifeedsci.2012.11.010
 
ELGHANDOUR Mona Mohamed Mohamed Yasseen, KHOLIF Ahmed Eid, MÁRQUEZ-MOLINA Ofelia, VÁZQUEZ-ARMIJO José Fernando, PUNIYA Anil Kumar, SALEM Abdelfattah Zeidan Mohamed (2015): Influence of individual or mixed cellulase and xylanase mixture on in vitro rumen gas production kinetics of total mixed rations with different maize silage and concentrate ratios. TURKISH JOURNAL OF VETERINARY AND ANIMAL SCIENCES, 39, 435-442 https://doi.org/10.3906/vet-1410-26
 
France J., Dijkstra J., Dhanoa M. S., Lopez S., Bannink A. (2000): Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro:derivation of models and other mathematical considerations. British Journal of Nutrition, 83, 143-150 https://doi.org/10.1017/S0007114500000180
 
Giraldo L. A., Tejido M. L., Ranilla M. J., Carro M. D. (2007): Effects of exogenous cellulase supplementation on microbial growth and ruminal fermentation of a high-forage diet in Rusitec fermenters. Journal of Animal Science, 85, 1962-1970 https://doi.org/10.2527/jas.2006-318
 
Goel Gunjan, Makkar Harinder P. S. (2012): Methane mitigation from ruminants using tannins and saponins. Tropical Animal Health and Production, 44, 729-739 https://doi.org/10.1007/s11250-011-9966-2
 
Goering M.K., Van Soest P.J. (1970): Forage Fibre Analysis (Apparatus, Reagents, Procedures and Some Applications). Agriculture Handbook No. 379. Agricultural Research Service, USDA, Washington, USA.
 
Karunanandaa K., Varga G.A., Akin D.E., Rigsby L.L., Royse D.J. (1995): Botanical fractions of rice straw colonized by white-rot fungi: changes in chemical composition and structure. Animal Feed Science and Technology, 55, 179-199 https://doi.org/10.1016/0377-8401(95)00805-W
 
Khattab H.M., Gado H.M., Kholif A.E., Mansour A.M., Kholif A.M. (2011): The Potential of Feeding Goats Sun Dried Rumen Contents with or without Bacterial Inoculums as Replacement for Berseem Clover and the Effects on Milk Production and Animal Health. International Journal of Dairy Science, 6, 267-277 https://doi.org/10.3923/ijds.2011.267.277
 
Khattab H.M., Gado H.M., Salem A.Z.M., Camacho L.M., El-Sayed M.M., Kholif A.M., Elshewy A.A., Kholif A.E. (2013): Chemical composition and in vitro digestibility of Pleurotus ostreatus spent rice straw. Animal Nutrition and Feed Technology, 13, 507–516.
 
Kholif A. E., Khattab H. M., El-Shewy A. A., Salem A. Z. M., Kholif A. M., El-Sayed M. M., Gado H. M., Mariezcurrena M. D. (2014): Nutrient Digestibility, Ruminal Fermentation Activities, Serum Parameters and Milk Production and Composition of Lactating Goats Fed Diets Containing Rice Straw Treated with &lt;italic&gt;Pleurotus ostreatus&lt;/italic&gt;. Asian-Australasian Journal of Animal Sciences, 27, 357-364 https://doi.org/10.5713/ajas.2013.13405
 
Lara-Bueno A., Mendoza Martinez G.D., Hernandez Garcia P.A., Martinez Garcia J.A., Plata Perez F.X. (2013): Evaluation of high doses of exogenous fibrolytic enzymes in lambs fed an oat straw based ration. Animal Nutrition and Feed Technology, 13, 355–362.
 
Lin Y., Gary E., Robert E. (1969): Action of proteolytic enzymes on N,N-dimethyl proteins. Basis for a microassay for proteolytic enzymes. Journal of Biological Chemistry, 244, 789–793.
 
Mao H.L., Wu C.H., Wang J.K., Liu J.X. (2013): Synergistic effect of cellulase and xylanase on in vitro rumen fermentation and microbial population with rice straw as substrate. Animal Nutrition and Feed Technology, 13, 477–487.
 
Marini R.P. (2003): Approaches to analyzing experiments with factorial arrangements of treatments plus other treatments. HortScience, 38, 117–120.
 
McCullough Helen (1967): The determination of ammonia in whole blood by a direct colorimetric method. Clinica Chimica Acta, 17, 297-304 https://doi.org/10.1016/0009-8981(67)90133-7
 
Morsy Tarek A., Kholif Ahmed E., Kholif Sobhy M., Kholif Abdelkader M., Sun Xuezhao, Salem Abdelfattah Z. M. (2016): Effects of Two Enzyme Feed Additives on Digestion and Milk Production in Lactating Egyptian Buffaloes. Annals of Animal Science, 16, - https://doi.org/10.1515/aoas-2015-0039
 
Nsereko V L, Beauchemin K A, Morgavi D P, Rode L M, Furtado A F, McAllister T A, Iwaasa A D, Yang W Z, Wang Y. (2002): Effect of a fibrolytic enzyme preparation from Trichoderma longibrachiatum on the rumen microbial population of dairy cows. Canadian Journal of Microbiology, 48, 14-20 https://doi.org/10.1139/w01-131
 
Robyt J.F., Whelan W.J. (1972): Reducing value methods for maltodextrins: 1. Chain-length dependence of alkaline 3,5-dinitrosalicylate and chain length independence of alkaline copper. Analytical Biochemistry, 45, 510–516.
 
ROJO R., KHOLIF A. E., SALEM A. Z. M., ELGHANDOUR M. M. Y., ODONGO N. E., MONTES DE OCA R., RIVERO N., ALONSO M. U. (2015): Influence of cellulase addition to dairy goat diets on digestion and fermentation, milk production and fatty acid content. The Journal of Agricultural Science, 153, 1514-1523 https://doi.org/10.1017/S0021859615000775
 
Salem A.Z.M., Alsersy H., Camacho L.M., El-Adawy M.M., ElghandourMMY , Kholif A.E., Rivero N., AlonsoMU , Zaragoza A. (): Feed intake, nutrient digestibility, nitrogen utilization, and ruminal fermentation activities in sheep fed Atriplex halimus ensiled with three developed enzyme cocktails. Czech Journal of Animal Science, 60, 185-194 https://doi.org/10.17221/8133-CJAS
 
Shojaeian K., Thakur S.S. (2007): Effect of exogenous fibrolytic enzymes supplementation to substrates containing different roughage: concentrate ratios on in vitro rumen fermentation, DM and NDF degradability. Indian Journal of Dairy Science, 60, 94–101.
 
Tang S.X., Zou Y., Wang M., Salem A.Z.M., Odongo N.E., Zhou C.S., Han X.F., Tan Z.L., Zhang M., Fu Y.F., Huang S.Q., He Z.X., Kang J.H. (2013): Effects of exogenous cellulase source on in vitro fermentation characteristics and methane production of crop straws and grasses. Animal Nutrition and Feed Technology, 13, 489–505.
 
Theodorou Michael K., Williams Barbara A., Dhanoa Mewa S., McAllan Alex B., France James (1994): A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48, 185-197 https://doi.org/10.1016/0377-8401(94)90171-6
 
Togtokhbayar Norovsambuu, Cerrillo María A., Rodríguez Germán Buendía, Elghandour Mona M. M. Y., Salem Abdelfattah Z. M., Urankhaich Chuluunbaatar, Jigjidpurev Sukhbaatar, Odongo Nicholas E., Kholif Ahmed E. (2015): Effect of exogenous xylanase on rumen in vitro gas production and degradability of wheat straw. Animal Science Journal, 86, 765-771 https://doi.org/10.1111/asj.12364
 
Wang Y., Ramirez-Bribiesca J. E., Yanke L. J., Tsang A., McAllister T. A. (2012): Effect of Exogenous Fibrolytic Enzyme Application on the Microbial Attachment and Digestion of Barley Straw In vitro. Asian-Australasian Journal of Animal Sciences, 25, 66-74 https://doi.org/10.5713/ajas.2011.11158
 
Welch R.W. (1995): The chemical composition of oats. In: Welch R.W. (ed.): The Oat Crop: Production and Utilization. Chapman and Hall, London, UK, 279–320.
 
AOAC (1997): Official Methods of Analysis. 16th Ed. Arlington, USA.
 
Bernfeld P. (1955): Amylases, alpha and beta. Methods in Enzymology, 1, 149–158.
 
Diaz A., Carro M.D., Saro C., Mateos I., Odongo E., Ranilla M.J. (2013): In vitro evaluation of commercial fibrolytic enzymes for improving the nutritive value of low-quality forages. Animal Nutrition and Feed Technology, 13, 461–476.
 
Elghandour M.M.Y., Salem A.Z.M., Gonzalez-Ronquillo M., Bórquez J.L., Gado H.M., Odongo N.E., Peñuelas C.G. (2013): Effects of exogenous enzymes on in vitro gas production kinetics and ruminal fermentation of four fibrous feeds. Animal Feed Science and Technology, 179, 46-53 https://doi.org/10.1016/j.anifeedsci.2012.11.010
 
ELGHANDOUR Mona Mohamed Mohamed Yasseen, KHOLIF Ahmed Eid, MÁRQUEZ-MOLINA Ofelia, VÁZQUEZ-ARMIJO José Fernando, PUNIYA Anil Kumar, SALEM Abdelfattah Zeidan Mohamed (2015): Influence of individual or mixed cellulase and xylanase mixture on in vitro rumen gas production kinetics of total mixed rations with different maize silage and concentrate ratios. TURKISH JOURNAL OF VETERINARY AND ANIMAL SCIENCES, 39, 435-442 https://doi.org/10.3906/vet-1410-26
 
France J., Dijkstra J., Dhanoa M. S., Lopez S., Bannink A. (2000): Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro:derivation of models and other mathematical considerations. British Journal of Nutrition, 83, 143-150 https://doi.org/10.1017/S0007114500000180
 
Giraldo L. A., Tejido M. L., Ranilla M. J., Carro M. D. (2007): Effects of exogenous cellulase supplementation on microbial growth and ruminal fermentation of a high-forage diet in Rusitec fermenters. Journal of Animal Science, 85, 1962-1970 https://doi.org/10.2527/jas.2006-318
 
Goel Gunjan, Makkar Harinder P. S. (2012): Methane mitigation from ruminants using tannins and saponins. Tropical Animal Health and Production, 44, 729-739 https://doi.org/10.1007/s11250-011-9966-2
 
Goering M.K., Van Soest P.J. (1970): Forage Fibre Analysis (Apparatus, Reagents, Procedures and Some Applications). Agriculture Handbook No. 379. Agricultural Research Service, USDA, Washington, USA.
 
Karunanandaa K., Varga G.A., Akin D.E., Rigsby L.L., Royse D.J. (1995): Botanical fractions of rice straw colonized by white-rot fungi: changes in chemical composition and structure. Animal Feed Science and Technology, 55, 179-199 https://doi.org/10.1016/0377-8401(95)00805-W
 
Khattab H.M., Gado H.M., Kholif A.E., Mansour A.M., Kholif A.M. (2011): The Potential of Feeding Goats Sun Dried Rumen Contents with or without Bacterial Inoculums as Replacement for Berseem Clover and the Effects on Milk Production and Animal Health. International Journal of Dairy Science, 6, 267-277 https://doi.org/10.3923/ijds.2011.267.277
 
Khattab H.M., Gado H.M., Salem A.Z.M., Camacho L.M., El-Sayed M.M., Kholif A.M., Elshewy A.A., Kholif A.E. (2013): Chemical composition and in vitro digestibility of Pleurotus ostreatus spent rice straw. Animal Nutrition and Feed Technology, 13, 507–516.
 
Kholif A. E., Khattab H. M., El-Shewy A. A., Salem A. Z. M., Kholif A. M., El-Sayed M. M., Gado H. M., Mariezcurrena M. D. (2014): Nutrient Digestibility, Ruminal Fermentation Activities, Serum Parameters and Milk Production and Composition of Lactating Goats Fed Diets Containing Rice Straw Treated with &lt;italic&gt;Pleurotus ostreatus&lt;/italic&gt;. Asian-Australasian Journal of Animal Sciences, 27, 357-364 https://doi.org/10.5713/ajas.2013.13405
 
Lara-Bueno A., Mendoza Martinez G.D., Hernandez Garcia P.A., Martinez Garcia J.A., Plata Perez F.X. (2013): Evaluation of high doses of exogenous fibrolytic enzymes in lambs fed an oat straw based ration. Animal Nutrition and Feed Technology, 13, 355–362.
 
Lin Y., Gary E., Robert E. (1969): Action of proteolytic enzymes on N,N-dimethyl proteins. Basis for a microassay for proteolytic enzymes. Journal of Biological Chemistry, 244, 789–793.
 
Mao H.L., Wu C.H., Wang J.K., Liu J.X. (2013): Synergistic effect of cellulase and xylanase on in vitro rumen fermentation and microbial population with rice straw as substrate. Animal Nutrition and Feed Technology, 13, 477–487.
 
Marini R.P. (2003): Approaches to analyzing experiments with factorial arrangements of treatments plus other treatments. HortScience, 38, 117–120.
 
McCullough Helen (1967): The determination of ammonia in whole blood by a direct colorimetric method. Clinica Chimica Acta, 17, 297-304 https://doi.org/10.1016/0009-8981(67)90133-7
 
Morsy Tarek A., Kholif Ahmed E., Kholif Sobhy M., Sun Xuezhao, Salem Abdelfattah Z. M. (2016): Effects of Two Enzyme Feed Additives on Digestion and Milk Production in Lactating Egyptian Buffaloes. Annals of Animal Science, 16, - https://doi.org/10.1515/aoas-2015-0039
 
Nsereko V L, Beauchemin K A, Morgavi D P, Rode L M, Furtado A F, McAllister T A, Iwaasa A D, Yang W Z, Wang Y. (2002): Effect of a fibrolytic enzyme preparation from Trichoderma longibrachiatum on the rumen microbial population of dairy cows. Canadian Journal of Microbiology, 48, 14-20 https://doi.org/10.1139/w01-131
 
Robyt J.F., Whelan W.J. (1972): Reducing value methods for maltodextrins: 1. Chain-length dependence of alkaline 3,5-dinitrosalicylate and chain length independence of alkaline copper. Analytical Biochemistry, 45, 510–516.
 
ROJO R., KHOLIF A. E., SALEM A. Z. M., ELGHANDOUR M. M. Y., ODONGO N. E., MONTES DE OCA R., RIVERO N., ALONSO M. U. (2015): Influence of cellulase addition to dairy goat diets on digestion and fermentation, milk production and fatty acid content. The Journal of Agricultural Science, 153, 1514-1523 https://doi.org/10.1017/S0021859615000775
 
Salem A.Z.M., Alsersy H., Camacho L.M., El-Adawy M.M., ElghandourMMY , Kholif A.E., Rivero N., AlonsoMU , Zaragoza A. (): Feed intake, nutrient digestibility, nitrogen utilization, and ruminal fermentation activities in sheep fed Atriplex halimus ensiled with three developed enzyme cocktails. Czech Journal of Animal Science, 60, 185-194 https://doi.org/10.17221/8133-CJAS
 
Shojaeian K., Thakur S.S. (2007): Effect of exogenous fibrolytic enzymes supplementation to substrates containing different roughage: concentrate ratios on in vitro rumen fermentation, DM and NDF degradability. Indian Journal of Dairy Science, 60, 94–101.
 
Tang S.X., Zou Y., Wang M., Salem A.Z.M., Odongo N.E., Zhou C.S., Han X.F., Tan Z.L., Zhang M., Fu Y.F., Huang S.Q., He Z.X., Kang J.H. (2013): Effects of exogenous cellulase source on in vitro fermentation characteristics and methane production of crop straws and grasses. Animal Nutrition and Feed Technology, 13, 489–505.
 
Theodorou Michael K., Williams Barbara A., Dhanoa Mewa S., McAllan Alex B., France James (1994): A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48, 185-197 https://doi.org/10.1016/0377-8401(94)90171-6
 
Togtokhbayar Norovsambuu, Cerrillo María A., Rodríguez Germán Buendía, Elghandour Mona M. M. Y., Salem Abdelfattah Z. M., Urankhaich Chuluunbaatar, Jigjidpurev Sukhbaatar, Odongo Nicholas E., Kholif Ahmed E. (2015): Effect of exogenous xylanase on rumen in vitro gas production and degradability of wheat straw. Animal Science Journal, 86, 765-771 https://doi.org/10.1111/asj.12364
 
Wang Y., Ramirez-Bribiesca J. E., Yanke L. J., Tsang A., McAllister T. A. (2012): Effect of Exogenous Fibrolytic Enzyme Application on the Microbial Attachment and Digestion of Barley Straw In vitro. Asian-Australasian Journal of Animal Sciences, 25, 66-74 https://doi.org/10.5713/ajas.2011.11158
 
Welch R.W. (1995): The chemical composition of oats. In: Welch R.W. (ed.): The Oat Crop: Production and Utilization. Chapman and Hall, London, UK, 279–320.
 
download PDF

© 2019 Czech Academy of Agricultural Sciences