Combination of let-7d-5p, miR-26a-5p, and miR-15a-5p is suitable normalizer for studying microRNA expression in skin tissue of Liaoning cashmere goat during hair follicle cycle

https://doi.org/10.17221/8782-CJASCitation:Bai W.L., Dang Y.L., Yin R.H., Yin R.L., Jiang W.Q., Wang Z.Y., Zhu Y.B., Wang J.J., Zhao Z.H., Luo G.B. (2016): Combination of let-7d-5p, miR-26a-5p, and miR-15a-5p is suitable normalizer for studying microRNA expression in skin tissue of Liaoning cashmere goat during hair follicle cycle. Czech J. Anim. Sci., 61: 99-107.
supplementary materialdownload PDF
The microRNAs are non-coding RNA molecules of approximately 20–22 nucleotides that are found to be implicated in a wide range of physiological processes. In this study, the suitability of 10 candidate reference RNAs was evaluated for microRNA expression data in the skin tissue of Liaoning cashmere goat including 1 small nuclear RNA (snRNA; RNU6B), 1 small nucleolar RNA (snoRNA; Z30), 1 rRNA (5S), 1 transfer RNA (tRNA; Met-tRNA), and 6 microRNAs (miR; let-7d-5p, miR-15a-5p, miR-26a-5p, miR-125a-5p, miR-214-3p, and miR-221-3p). Based on geNorm and NormFinder algorithms, we identified let-7d-5p, miR-26a-5p, and miR-15a-5p as the most stable reference RNAs. Also, three reference RNAs (let-7d-5p, miR-26a-5p, and miR-15a-5p) were sufficient for the normalization of microRNA expression data in the skin of this breed. We further assessed the suitability of let-7d-5p, miR-26a-5p, and miR-15a-5p in a combination as reference RNAs through detecting the relative expression of miR-24-3p, miR-29a-3p, miR-145a-5p, and miR-205-5p as putative genes of interest. Significant differences were revealed in the relative expression of miR-24-3p, miR-29a-3p, miR-145a-5p, and miR-205-5p at telogen stage of hair follicle cycle when a combination of let-7d-5p, miR-26a-5p, and miR-15a-5p vs a single let-7d-5p were used as reference RNA. Based on the results from this study, we suggested that the combination of let-7d-5p, miR-26a-5p, and miR-15a-5p as normalizers for microRNA expression data would be more reliable than that of single let-7d-5p, and the geometric mean of these three microRNAs (let-7d-5p, miR-26a-5p, and miR-15a-5p) can be used for the normalization of microRNAs expression data in the skin of Liaoning cashmere goat.
References:
Andersen C. L. (2004): Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Research, 64, 5245-5250  https://doi.org/10.1158/0008-5472.CAN-04-0496
 
Baek Daehyun, Villén Judit, Shin Chanseok, Camargo Fernando D., Gygi Steven P., Bartel David P. (): The impact of microRNAs on protein output. Nature, 455, 64-71  https://doi.org/10.1038/nature07242
 
Bai W. L., Yin R. H., Jiang W. Q., Luo G. B., Yin R. L., Li C., Zhao Z. H. (2012): Molecular Characterization of Prolactin cDNA and Its Expression Pattern in Skin Tissue of Liaoning Cashmere Goat. Biochemical Genetics, 50, 694-701  https://doi.org/10.1007/s10528-012-9512-6
 
Bai W.L., Yin R.H., Yang R.J., Khan W.A., Ma Z.J., Zhao S.J., Jiang W.Q., Wang Z.Y., Zhu Y.B., Luo G.B., Zhao Z.H. (2013): Technical note: Identification of suitable normalizers for microRNA expression analysis in milk somatic cells of the yak (Bos grunniens). Journal of Dairy Science, 96, 4529-4534  https://doi.org/10.3168/jds.2013-6603
 
BARTEL D (2004): MicroRNAsGenomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297  https://doi.org/10.1016/S0092-8674(04)00045-5
 
Bionaz M., Loor J. J. (2007): Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiological Genomics, 29, 312-319  https://doi.org/10.1152/physiolgenomics.00223.2006
 
Brinkhof Bas, Spee Bart, Rothuizen Jan, Penning Louis C. (2006): Development and evaluation of canine reference genes for accurate quantification of gene expression. Analytical Biochemistry, 356, 36-43  https://doi.org/10.1016/j.ab.2006.06.001
 
Croce Carlo M., Calin George A. (2005): miRNAs, Cancer, and Stem Cell Division. Cell, 122, 6-7  https://doi.org/10.1016/j.cell.2005.06.036
 
Davoren Pamela A, McNeill Roisin E, Lowery Aoife J, Kerin Michael J, Miller Nicola (2008): Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Molecular Biology, 9, 76-  https://doi.org/10.1186/1471-2199-9-76
 
Filipowicz W., Bhattacharyya S.N., Sonenberg N. (2008): Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews, 9, 102–114.
 
FU Shao-Yin, ZHAO De-Chao, ZHAO Hong-Li, LI Jin-Quan, ZHANG Wen-Guang (2012): A method for screening microRNA target genes in goat skin by mi-croRNA seed sequence mediated PCR. Hereditas (Beijing), 34, 919-926  https://doi.org/10.3724/SP.J.1005.2012.00919
 
Gu Y.R., Liang Y., Gong J.J., Zeng K., Li Z.Q., Lei Y.F., He Z.P., Lv X.B. (2012): Short Communication Suitable internal control microRNA genes for measuring miRNA abundance in pig milk during different lactation periods. Genetics and Molecular Research, 11, 2506-2512  https://doi.org/10.4238/2012.June.18.3
 
He X.Y., Hao H.Q., Liu D.D., Fan R.W., Cao J., Zhu Z.W., Dond Y.J., Xing H.Q. (2010): Difference of microRNA expression in the ear and back skin of young alpaca (Lama pacos). Chinese Journal of Biochemistry and Molecular Biology, 26, 1016–1022.
 
Ji Z., Wang G., Xie Z., Wang J., Zhang C., Dong F., Chen C. (2012): Identification of novel and differentially expressed microRNAs of dairy goat mammary gland tissues using Solexa sequencing and bioinformatics. PLoS One, 7, e49463.
 
Kloosterman Wigard P., Plasterk Ronald H.A. (2006): The Diverse Functions of MicroRNAs in Animal Development and Disease. Developmental Cell, 11, 441-450  https://doi.org/10.1016/j.devcel.2006.09.009
 
Latham G.J. (2010): Normalization of microRNA quantitative RT-PCR data in reduced scale experimental designs. Methods in Molecular Biology, 667, 19–31.
 
Li Zhen, Liu Hongyun, Jin Xiaolu, Lo Lijan, Liu Jianxin (2012): Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation. BMC Genomics, 13, 731-  https://doi.org/10.1186/1471-2164-13-731
 
Liu C.G., Calin G.A., Meloon B., Gamliel N., Sevignani C., Ferracin M., Dumitru C.D., Shimizu M., Zupo S., Dono M., Alder H., Bullrich F., Negrini M., Croce C.M. (2004): Proceedings of the National Academy of Sciences of the United States of America, 101, 9740–9744.
 
Liu Zhihong, Xiao Hongmei, Li Huipeng, Zhao Yanhong, Lai Shuangying, Yu Xinlei, Cai Ting, Du Chenguang, Zhang Wenguang, Li Jinquan, Palit Deb Swati (2012): Identification of Conserved and Novel microRNAs in Cashmere Goat Skin by Deep Sequencing. PLoS ONE, 7, e50001-  https://doi.org/10.1371/journal.pone.0050001
 
Lu Jun, Getz Gad, Miska Eric A., Alvarez-Saavedra Ezequiel, Lamb Justin, Peck David, Sweet-Cordero Alejandro, Ebert Benjamin L., Mak Raymond H., Ferrando Adolfo A., Downing James R., Jacks Tyler, Horvitz H. Robert, Golub Todd R. (2005): MicroRNA expression profiles classify human cancers. Nature, 435, 834-838  https://doi.org/10.1038/nature03702
 
Mardaryev A. N., Ahmed M. I., Vlahov N. V., Fessing M. Y., Gill J. H., Sharov A. A., Botchkareva N. V. (): Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. The FASEB Journal, 24, 3869-3881  https://doi.org/10.1096/fj.10-160663
 
McGregor B.A., An M., Jiang Y. (1991): Fleece metrology of Liaoning cashmere goats. Small Ruminant Research, 4, 61-71  https://doi.org/10.1016/0921-4488(91)90053-S
 
Miska E.A., Alvarez-Saavedra E., Townsend M., Yoshii A., Sestan N., Rakic P., Constantine-Paton M., Horvitz H.R. (2004): Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biology, 5, R68.
 
Peltier H. J., Latham G. J. (2008): Normalization of microRNA expression levels in quantitative RT-PCR assays: Identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA, 14, 844-852  https://doi.org/10.1261/rna.939908
 
Peters Iain R., Peeters Dominique, Helps Chris R., Day Michael J. (2007): Development and application of multiple internal reference (housekeeper) gene assays for accurate normalisation of canine gene expression studies. Veterinary Immunology and Immunopathology, 117, 55-66  https://doi.org/10.1016/j.vetimm.2007.01.011
 
Pfaffl Michael W., Tichopad Ales, Prgomet Christian, Neuvians Tanja P. (2004): Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnology Letters, 26, 509-515  https://doi.org/10.1023/B:BILE.0000019559.84305.47
 
Selbach Matthias, Schwanhäusser Björn, Thierfelder Nadine, Fang Zhuo, Khanin Raya, Rajewsky Nikolaus (): Widespread changes in protein synthesis induced by microRNAs. Nature, 455, 58-63  https://doi.org/10.1038/nature07228
 
Sempere L.F., Freemantle S., Pitha-Rowe I., Moss E., Dmitrovsky E., Ambros V. (2004): Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 5, R13.
 
Tricarico Carmela, Pinzani Pamela, Bianchi Simonetta, Paglierani Milena, Distante Vito, Pazzagli Mario, Bustin Stephen A, Orlando Claudio (2002): Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Analytical Biochemistry, 309, 293-300  https://doi.org/10.1016/S0003-2697(02)00311-1
 
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. (2002): Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, research0034.1–0034.11.
 
Varshney N., Mohanty A.K., Kumar S., Kaushik J.K., Dang A.K., Mukesh M., Mishra B.P., Kataria R., Kimothi S.P., Mukhopadhyay T.K., Malakar D., Prakash B.S., Grover S., Batish V.K. (2012): Selection of suitable reference genes for quantitative gene expression studies in milk somatic cells of lactating cows (Bos indicus). Journal of Dairy Science, 95, 2935-2945  https://doi.org/10.3168/jds.2011-4442
 
Wang M., Moisá S., Khan M.J., Wang J., Bu D., Loor J.J. (2012): MicroRNA expression patterns in the bovine mammary gland are affected by stage of lactation. Journal of Dairy Science, 95, 6529-6535  https://doi.org/10.3168/jds.2012-5748
 
Wenguang Zhang, Jianghong Wu, Jinquan Li, Yashizawa Midori (2007): A Subset of Skin-Expressed microRNAs with Possible Roles in Goat and Sheep Hair Growth Based on Expression Profiling of Mammalian microRNAs. OMICS: A Journal of Integrative Biology, 11, 385-396  https://doi.org/10.1089/omi.2006.0031
 
Wessels Jocelyn M., Edwards Andrew K., Zettler Candace, Tayade Chandrakant, Cooney Austin John (2011): Selection and Validation of Reference Genes for miRNA Expression Studies during Porcine Pregnancy. PLoS ONE, 6, e28940-  https://doi.org/10.1371/journal.pone.0028940
 
Xia J., Joyce C. E., Bowcock A. M., Zhang W. (): Noncanonical microRNAs and endogenous siRNAs in normal and psoriatic human skin. Human Molecular Genetics, 22, 737-748  https://doi.org/10.1093/hmg/dds481
 
Yuan Chao, Wang Xiaolong, Geng Rongqing, He Xiaolin, Qu Lei, Chen Yulin (2013): Discovery of cashmere goat (Capra hircus) microRNAs in skin and hair follicles by Solexa sequencing. BMC Genomics, 14, 511-  https://doi.org/10.1186/1471-2164-14-511
 
supplementary materialdownload PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti