Prospective antimycotoxigenic action of wild Opuntia ficus-indica by-products

https://doi.org/10.17221/11/2020-CJFSCitation:

Badr A.N., Gramadzka K., Shehata M.G., Szablewska K., Drzewiecka K., Abdel Razek A.G. (2020): Prospective anti-mycotoxigenic act of wild Opuntia ficus-indica by-products. Czech J. of Food Sci., 38: 308–314.

download PDF

Numerous natural compounds perform pharmaceutical, antimycotic and antitoxic purposes in the body system. The aim was to evaluate new phytoconstituents that provide antimycotoxigenic properties against mycotoxins. Bioactive materials chosen were fruit peels and cladodes of wild Opuntia ficus-indica containing a measurable quantity of bioactive phytochemicals. The highest concentration of bioactive metabolites was recorded for protocatechuic and t-cinnamic acids. A reduction effect of bioactives was estimated against aflatoxins, ochratoxin A and zearalenone in a simulated body system. Antifungal activity was determined in liquid media to evaluate antimycotic properties. Lyophilised extracts caused an aflatoxin reduction in media by 14.65% to 23.77% for fruit peels and cladodes, respectively. It caused a decrease of 59% zearalenone and 51% of ochratoxin A in a in a simulated body fluid. The cladode extract manifested better antimycotic and antimycotoxigenic characteristics due to its bioactive contents. These results support a modern antimycotoxin trend of food preservation that has a considerable impact on food safety. 

References:
Abdel-Razek A., Shehata M. Badr A. Gromadzka K., Stępień Ł. (2019): The effect of chemical composition of wild Opuntia ficus indica byproducts on its nutritional quality, antioxidant and antifungal efficacy. Egyptian Journal of Chemistry, 62: 47–61.
 
Ávila-Nava A., Calderón-Oliver M., Medina-Campos O.N., Zou T., Gu L., Torres N., Tovar A.R., Pedraza-Chaverri J. (2014): Extract of cactus (Opuntia ficus indica) cladodes scavenges reactive oxygen species in vitro and enhances plasma antioxidant capacity in humans. Journal of Functional Foods, 10: 13–24. https://doi.org/10.1016/j.jff.2014.05.009
 
Brahmi D., Bouaziz C., Ayed Y., Ben Mansour H., Zourgui L., Bacha H. (2011): Chemopreventive effect of cactus Opuntia ficus indica on oxidative stress and genotoxicity of aflatoxin B1. Nutrition & Metabolism, 8: 73.
 
Chao C.Y., Yin M.C. (2009): Antibacterial effects of roselle calyx extracts and protocatechuic acid in ground beef and apple juice. Foodborne Pathogens and Disease, 6: 201–206. https://doi.org/10.1089/fpd.2008.0187
 
Kakkar S., Bais S. (2014): A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacology, 2014: 952943.
 
Katsanidis E., Addis P.B. (2001): Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Bioassays for Oxidative Stress Status, Elsevier: 3–6.
 
Kurasiak-Popowska D., Stuper-Szablewska K., Nawracała J., Tomkowiak A., Perkowski J. (2016): Phenolic acid content in wheat grain (Triticum spp) of different genotypes. Revista de la Facultad de Ciencias Agrarias, 48: 1–7.
 
Kurasiak-Popowska D., Ryńska B., Stuper-Szablewska K. (2019). Analysis of distribution of selected bioactive compounds in Camelina sativa from seeds to pomace and oil. Agronomy, 9: 168.
 
Lanuzza F., Occhiuto F., Monforte M.T., Tripodo M.M., D’Angelo V., Galati E.M. (2017): Antioxidant phytochemicals of Opuntia ficus-indica (L.) Mill. cladodes with potential anti-spasmodic activity. Pharmacognosy Magazine, 13: S424–S429.
 
Osuna-Martínez L., Reyes Esparza J., Rodríguez-Fragoso L. (2014): Cactus (Opuntia ficus-indica): A review on its antioxidants properties and potential pharmacological use in chronic diseases. Natural Products Chemistry &
 
Ramadan M.F., Mörsel J.T. (2003): Recovered lipids from prickly pear [Opuntia ficus-indica (L.) Mill] peel: A good source of polyunsaturated fatty acids, natural antioxidant vitamins and sterols. Food Chemistry, 83: 447–456. https://doi.org/10.1016/S0308-8146(03)00128-6
 
Shahat M.S., Badr A.N., Hegaziy A.I., Ramzy S., Samie M.A. (2017): Reducing the histopathological and biochemical toxicity of aflatoxins contaminated soybean using ozone treatment. Annual Research and Review in Biology, 15: 1–10. https://doi.org/10.9734/ARRB/2017/35075
 
Shehata M.G., Badr A.N., El-Sohaimy S.A. (2018): Novel antifungal bacteriocin from Lactobacillus paracasei KC39 with anti-mycotoxigenic properties. Bioscience Research, 15: 4171–4183.
 
Shehata M.G., Badr A.N., El-Sohaimy S.A., Asker D., Awad T.S. (2019): Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Annals of Agricultural Sciences, 64: 71–78. https://doi.org/10.1016/j.aoas.2019.05.002
 
Stintzing F.C., Carle R. (2005): Cactus stems (Opuntia spp.): A review on their chemistry, technology, and uses. Molecular Nutrition Food Research International, 49: 175–194.
 
Stuper-Szablewska K., Rogoziński T., Perkowski J. (2017): Contamination of pine and birch wood dust with microscopic fungi and determination of its sterol contents. Archives of Industrial Hygiene Toxicology Reports, 68: 127–134. https://doi.org/10.1515/aiht-2017-68-2924
 
Tanaka T., Tanaka T., Tanaka,M. (2011): Potential cancer chemopreventive activity of protocatechuic acid. Journal of Experimental Clinical Medicine, 3: 27–33.
 
Zielinski A.A.F., Haminiuk C.W.I., Alberti A., Nogueira A., Demiate I.M., Granato A. (2014): A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Research International, 60: 246–254. https://doi.org/10.1016/j.foodres.2013.09.010
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti