Effect of preparation method and roasting temperature on total polyphenol content in coffee beverages

https://doi.org/10.17221/122/2020-CJFSCitation:

Várady M., Hrušková T., Popelka P. (2020): Effect of preparation method and roasting temperature on total polyphenol content in coffee beverages. Czech J. Food Sci., 38: 417–421.

download PDF

We evaluated the differences in total polyphenol content (TPC) of beverages prepared by three methods (Hario V60, espresso and pour-over coffee) using single-origin beans roasted at four temperatures. The beans were roasted based on the degree of roasting: the lightest roasting had a final temperature of 204 °C (first roasting), a slightly darker roasting had a final temperature of 205 °C (second roasting), a dark roasting had a final temperature of 215 °C (third roasting) and the darkest roasting had a final temperature of 220 °C (fourth roasting). TPC in the beverage was highest for the Hario V60 for all temperatures, ranging from 32.0 to 46.8 mg GAE g–1 (gallic acid equivalent per 1 g of ground beans). The third roasting had the highest TPC, ranging from 34.6 to 46.8 mg GAE g–1 for all methods of preparation, whereas the content for the fourth roasting ranged from 28.6 to 32.3 mg GAE g–1. Our results indicated that the differences in TPC in the beverage depended on the preparation method (P < 0.001) and the degree of roasting (P < 0.001). The most nutritional coffee was prepared using the Hario V60 with the third roasting.

References:
Bähre F., Maier H.G. (1996): Electrophoretic clean-up of organic acids from coffee for the GC/MS analysis. Fresenius Journal of Analytical Chemistry, 355: 190–193.
 
Blainski A., Lopes G.C., Palazzo de Mello J.C. (2013): Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium Brasiliense L. Molecules, 18: 6852–6865. https://doi.org/10.3390/molecules18066852
 
Cämmerer B., Kroh L.W. (2006): Antioxidant activity of coffee brews. European Food Research and Technology, 223: 469–474. https://doi.org/10.1007/s00217-005-0226-4
 
Catelani T.A., Páscoa R.N.M.J., Santos J.R., Pezza L., Pezza H.R., Lima J.L.F.C., Lopes J.A. (2017): A non-invasive real-time methodology for the quantification of antioxidant properties in coffee during the roasting process based on near-infrared spectroscopy. Food and Bioprocess Technology, 10: 630–638. https://doi.org/10.1007/s11947-016-1843-6
 
Clifford M.N., Marks S., Knight S., Kuhnert N. (2006): Characterization by LC-MS(n) of four new classes of p-coumaric acid-containing diacyl chlorogenic acids in green coffee beans. Journal of Agricultural and Food Chemistry, 54: 4095–4101. https://doi.org/10.1021/jf060536p
 
Cory H., Passarelli S., Szeto J., Tamez M., Mattei J. (2018): The role of polyphenols in human health and food systems: A mini-review. Frontiers in Nutrition, 5: 87. https://doi.org/10.3389/fnut.2018.00087
 
Cotter A.R., Hopfer H. (2018): The effects of storage temperature on the aroma of whole bean Arabica coffee evaluated by coffee consumers and HS-SPME-GC-MS. Beverages, 4: 68.  https://doi.org/10.3390/beverages4030068
 
del Castillo M.D., Ames J.M., Gordon M.H. (2002): Effect of roasting on the antioxidant activity of coffee brews. Journal of Agricultural and Food Chemistry, 50: 3698–3703. https://doi.org/10.1021/jf011702q
 
Dybkowska E., Sadowska A., Rakowska R., Dębowska M., Świderski F., Świąder K. (2017): Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting. Roczniki Państwowego Zakładu Higieny, 68: 347–353.
 
Farah A., de Paula Lima J. (2019): Consumption of chlorogenic acids through coffee and health implications. Beverages, 5: 11. https://doi.org/10.3390/beverages5010011
 
Fikry M., Yusof Y.A., Al-Awaadh A.M., Rahman R.A., Chin N.L., Mousa E., Chang L.S. (2019): Effect of the roasting conditions on the physicochemical, quality and sensory attributes of coffee-like powder and brew from defatted palm date seeds. Foods, 8: 61. https://doi.org/10.3390/foods8020061
 
Flambeau K.J., Yoon J. (2018): Characterization of raw and roasted fully washed specialty bourbon cultivar of Coffea arabica from major coffee growing areas in Rwanda. Food Engineering Progress, 22: 89–99. https://doi.org/10.13050/foodengprog.2018.22.2.89
 
Ginz M., Balzer H.H., Bradbury A.G.W., Maier H.G. (2000): Formation of aliphatic acids by carbohydrate degradation during roasting of coffee. European Food Research and Technology, 211: 404–410. https://doi.org/10.1007/s002170000215
 
Gloess A. N., Schonbachler B., Klopprogge B., D’Ambrosio L., Chatelain K., Bongartz A., Strittmatter A., Rast M., Yeretzian C. (2013): Comparison of nine common coffee extraction methods: Instrumental and sensory analysis. European Food Research and Technology, 236: 607–627.  https://doi.org/10.1007/s00217-013-1917-x
 
Hecimovic I., Belscak-Cvitanovic A., Horzic D., Komes D. (2011): Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chemistry, 129: 991–1000. https://doi.org/10.1016/j.foodchem.2011.05.059
 
Jaiswal R., Patras M.A., Eravuchira P.J., Kuhnert N. (2010): Profile and characterization of the chlorogenic acids in green Robusta coffee beans by LC-MS(n): Identification of seven new classes of compounds. Journal of Agricultural and Food Chemistry, 58: 8722–8737. https://doi.org/10.1021/jf1014457
 
Janda K., Jakubczyk K., Baranowska-Bosiacka I., Kapczuk P., Kochman J., Rebacz-Maron E., Gutowska I. (2020): mineral composition and antioxidant potential of coffee beverages depending on the brewing method. Foods, 9: 121. https://doi.org/10.3390/foods9020121
 
Kaiser N., Birkholz D., Colomban S., Navarini L., Engelhardt U.H. (2013): A new method for the preparative isolation of chlorogenic acid lactones from coffee and model roasts of 5-caffeoylquinic acid. Journal of Agricultural and Food Chemistry, 61: 6937–6694. https://doi.org/10.1021/jf4011356
 
Król K., Gantner M., Tatarak A., Hallmann E. (2020): The content of polyphenols in coffee beans as roasting, origin and storage effect. European Food Research and Technology, 246: 33–39. https://doi.org/10.1007/s00217-019-03388-9
 
Liu Y., Kitts D.D. (2011): Confirmation that the Maillard reaction is the principle contributor to the antioxidant capacity of coffee brews. Food Research International, 44: 2418–2424. https://doi.org/10.1016/j.foodres.2010.12.037
 
Moreira A.S., Nunes F.M., Domingues M.R., Coimbra M.A. (2012): Coffee melanoidins: Structures, mechanisms of formation and potential health impacts. Food & Function, 3: 903–915.
 
Opitz S.E.W., Smrke S., Goodman B.A., Keller M., Schenker S., Yeretzian C. (2014): Antioxidant generation during coffee roasting: A comparison and interpretation from three complementary assays. Foods, 3: 586–604. https://doi.org/10.3390/foods3040586
 
Pérez-Jiménez J., Neveu V., Vos F., Scalber A. (2010): Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. European Journal of Clinical Nutrition, 64: 112–120. https://doi.org/10.1038/ejcn.2010.221
 
Rao N.Z., Fuller M. (2018): Acidity and antioxidant activity of cold brew coffee. Scientific Reports, 8: 16030. https://doi.org/10.1038/s41598-018-34392-w
 
Sacchetti G., Mattia C.D., Pittia P., Mastrocola D. (2009): Effect of roasting degree, equivalent thermal effect and coffee type on the radical scavenging activity of coffee brews and their phenolic fraction. Journal of Food Engineering, 90: 74–80. https://doi.org/10.1016/j.jfoodeng.2008.06.005
 
Somporn C., Kamtuo A., Theerakulpisut P., Siriamornpun S. (2011): Effects of roasting degree on radical scavenging activity, phenolics and volatile compounds of Arabica coffee beans (Coffea arabica L. cv. Catimor). International Journal of Food Science & Technology, 46: 2287–2296.
 
Tamanna N., Mahmood N. (2015): Food processing and Maillard reaction products: Effect on human health and nutrition. International Journal of Food Science, 2015: 526762. https://doi.org/10.1155/2015/526762
 
Vignoli J.A., Bassoli D.G., Benassi M.T. (2011): Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chemistry, 124: 863–868. https://doi.org/10.1016/j.foodchem.2010.07.008
 
Vignoli J.A., Viegas M.C., Bassoli D.G., Benassi M.T. (2014): Roasting process affects differently the bioactive compounds and the antioxidant activity of Arabica and Robusta coffees. Food Research International, 61: 279–285. https://doi.org/10.1016/j.foodres.2013.06.006
 
Votavová L., Voldřich M., Ševčík R., Čížková H., Mlejnecká J., Stolař M., Fleišman T. (2009): Changes of antioxidant capacity of Robusta coffee during roasting. Czech Journal of Food Sciences, 27: S50–S52. https://doi.org/10.17221/1105-CJFS
 
Wei F., Furihata K., Koda M., Hu F., Miyakawa T., Tanokura M. (2012): Roasting process of coffee beans as studied by nuclear magnetic resonance: Time course of changes in composition. Journal of Agricultural and Food Chemistry, 60: 1005–1012. https://doi.org/10.1021/jf205315r
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti